920 research outputs found

    Evaluating system utility and conceptual fit using CASSM

    Get PDF
    There is a wealth of user-centred evaluation methods (UEMs) to support the analyst in assessing interactive systems. Many of these support detailed aspects of use – for example: Is the feedback helpful? Are labels appropriate? Is the task structure optimal? Few UEMs encourage the analyst to step back and consider how well a system supports users’ conceptual understandings and system utility. In this paper, we present CASSM, a method which focuses on the quality of ‘fit’ between users and an interactive system. We describe the methodology of conducting a CASSM analysis and illustrate the approach with three contrasting worked examples (a robotic arm, a digital library system and a drawing tool) that demonstrate different depths of analysis. We show how CASSM can help identify re-design possibilities to improve system utility. CASSM complements established evaluation methods by focusing on conceptual structures rather than procedures. Prototype tool support for completing a CASSM analysis is provided by Cassata, an open source development

    On the Relation between Solar Activity and Clear-Sky Terrestrial Irradiance

    Full text link
    The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958-2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by about 0.2 +/- 0.1% over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.Comment: 16 pages, 7 figures, in press at Solar Physics; minor changes to the text to match final published versio

    Combining perceptual regulation and exergaming for exercise prescription in low-active adults with and without cognitive impairment

    Get PDF
    Background:Exercise adherence in already low-active older adults with and without mild cognitive impairment (MCI) remains low. Perceptual regulation and exergaming may facilitate future exercise behaviour by improving the affective experience, however evidence that this population can perceptually regulate is lacking. To explore this, we investigated 1) perceptual regulation of exercise intensity during either exergaming or regular ergometer cycling and 2) explored affective responses. Methods:Thirty-two low active older adults (73.9 ± 7.3 years, n = 16, 8 females) with or without MCI (70.9 ± 5.5 years, n = 16, 11 females) participated in a sub-maximal fitness assessment to determine ventilatory threshold (VT) and two experimental sessions (counterbalanced: exergaming or regular ergometer cycling). Experimental sessions consisted 21-min of continuous cycling with 7-min at each: RPE 9, 11 and 13. Oxygen consumption (VO2), heart rate (HR), and affect (Feeling Scale) were obtained throughout the exercise. Results:VO2 (p < 0.01) and HR (p < 0.01) increased linearly with RPE, but were not significantly different between exercise modes or cognitive groups. At RPE 13, participants worked above VT in both modes (exergaming: 115.7 ± 27.3; non-exergaming 114.1 ± 24.3 VO2 (%VT)). Regardless of cognitive group, affect declined significantly as RPE increased (p < 0.01). However on average, affect remained pleasant throughout and did not differ between exercise modes or cognitive groups. Conclusions:These results suggest low-active older adults can perceptually regulate exercise intensity, regardless of cognition or mode. At RPE 13, participants regulated above VT, at an intensity that improves cardiorespiratory fitness long-term, and affect remained positive in the majority of participants, which may support long-term physical activity adherence.Liam McAuliffe, Gaynor C. Parfitt, Roger G. Eston, Caitlin Gray, Hannah A. D. Keage and Ashleigh E. Smit

    Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems

    Get PDF
    We present a general discussion of the techniques of destabilizing dark states in laser-driven atoms with either a magnetic field or modulated laser polarization. We show that the photon scattering rate is maximized at a particular evolution rate of the dark state. We also find that the atomic resonance curve is significantly broadened when the evolution rate is far from this optimum value. These results are illustrated with detailed examples of destabilizing dark states in some commonly-trapped ions and supported by insights derived from numerical calculations and simple theoretical models.Comment: 14 pages, 10 figure

    Two-Loop O(αsGFmt2){\cal O}(\alpha_sG_Fm_t^2) Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson

    Full text link
    Low- and intermediate mass Higgs bosons decay preferably into fermion pairs. The one-loop electroweak corrections to the respective decay rates are dominated by a flavour-independent term of O(GFmt2){\cal O}(G_Fm_t^2). We calculate the two-loop gluon correction to this term. It turns out that this correction screens the leading high-mtm_t behaviour of the one-loop result by roughly 10\%. We also present the two-loop QCD correction to the contribution induced by a pair of fourth-generation quarks with arbitrary masses. As expected, the inclusion of the QCD correction considerably reduces the renormalization-scheme dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Two-loop scalar self-energies in a general renormalizable theory at leading order in gauge couplings

    Full text link
    I present results for the two-loop self-energy functions for scalars in a general renormalizable field theory, using mass-independent renormalization schemes based on dimensional regularization and dimensional reduction. The results are given in terms of a minimal set of loop-integral basis functions, which are readily evaluated numerically by computers. This paper contains the contributions corresponding to the Feynman diagrams with zero or one vector propagator lines. These are the ones needed to obtain the pole masses of the neutral and charged Higgs scalar bosons in supersymmetry, neglecting only the purely electroweak parts at two-loop order. A subsequent paper will present the results for the remaining diagrams, which involve two or more vector lines.Comment: 26 pages, 4 figures, revtex4, axodraw.sty. Version 2: sentence after eq. (A.13) corrected, references added. Version 3: typos in eqs. (5.17), (5.20), (5.21), (5.32) are corrected. Also, the MSbar versions of eqs. (5.32) and (5.33) are now include

    Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Although meningitis is largely preventable, it still causes hundreds of thousands of deaths globally each year. WHO set ambitious goals to reduce meningitis cases by 2030, and assessing trends in the global meningitis burden can help track progress and identify gaps in achieving these goals. Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we aimed to assess incident cases and deaths due to acute infectious meningitis by aetiology and age from 1990 to 2019, for 204 countries and territories. Methods We modelled meningitis mortality using vital registration, verbal autopsy, sample-based vital registration, and mortality surveillance data. Meningitis morbidity was modelled with a Bayesian compartmental model, using data from the published literature identified by a systematic review, as well as surveillance data, inpatient hospital admissions, health insurance claims, and cause-specific meningitis mortality estimates. For aetiology estimation, data from multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature studies were analysed by use of a network analysis model to estimate the proportion of meningitis deaths and cases attributable to the following aetiologies: Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococcus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Staphylococcus aureus, viruses, and a residual other pathogen category. Findings: In 2019, there were an estimated 236 000 deaths (95% uncertainty interval [UI] 204 000–277 000) and 2·51 million (2·11–2·99) incident cases due to meningitis globally. The burden was greatest in children younger than 5 years, with 112 000 deaths (87400–145000) and 1·28 million incident cases (0·947–1·71) in 2019. Age-standardised mortality rates decreased from 7·5 (6·6–8·4) per 100000 population in 1990 to 3·3 (2·8–3·9) per 100000 population in 2019. The highest proportion of total all-age meningitis deaths in 2019 was attributable to S pneumoniae (18·1% [17·1–19·2]), followed by N meningitidis (13·6% [12·7–14·4]) and K pneumoniae (12·2% [10·2–14·3]). Between 1990 and 2019, H influenzae showed the largest reduction in the number of deaths among children younger than 5 years (76·5% [69·5–81·8]), followed by N meningitidis (72·3% [64·4–78·5]) and viruses (58·2% [47·1–67·3]). Interpretation Substantial progress has been made in reducing meningitis mortality over the past three decades. However, more meningitis-related deaths might be prevented by quickly scaling up immunisation and expanding access to health services. Further reduction in the global meningitis burden should be possible through low-cost multivalent vaccines, increased access to accurate and rapid diagnostic assays, enhanced surveillance, and early treatment.GBD, Meningitis Antimicrobial Resistance Collaborators ... Han Yong Wunrow ... Dinesh Bhandari ... Andrew T Olagunju ... et al

    Novel Approach to Confront Electroweak Data and Theory

    Get PDF
    A novel approach to study electroweak physics at one-loop level in generic SU(2)L×U(1)Y{\rm SU(2)_L \times U(1)_Y} theories is introduced. It separates the 1-loop corrections into two pieces: process specific ones from vertex and box contributions, and universal ones from contributions to the gauge boson propagators. The latter are parametrized in terms of four effective form factors eˉ2(q2)\bar{e}^2(q^2), sˉ2(q2)\bar{s}^2(q^2), gˉZ2(q2)\bar{g}_Z^2(q^2) and gˉW2(q2)\bar{g}_W^2 (q^2) corresponding to the γγ\gamma\gamma, γZ\gamma Z, ZZZZ and WWWW propagators. Under the assumption that only the Standard Model contributes to the process specific corrections, the magnitudes of the four form factors are determined at q2=0q^2=0 and at q^2=\mmz by fitting to all available precision experiments. These values are then compared systematically with predictions of SU(2)L×U(1)Y{\rm SU(2)_L \times U(1)_Y} theories. In all fits \alpha_s(\mz) and \bar{\alpha}(\mmz) are treated as external parameters in order to keep the interpretation as flexible as possible. The treatment of the electroweak data is presented in detail together with the relevant theoretical formulae used to interpret the data. No deviation from the Standard Model has been identified. Ranges of the top quark and Higgs boson masses are derived as functions of \alpha_s(\mz) and \bar{\alpha}(\mmz). Also discussed are consequences of the recent precision measurement of the left-right asymmetry at SLC as well as the impact of a top quark mass and an improved WW mass measurement.Comment: 123 pages, LaTeX (33 figures available via anonymous ftp), KEK-TH-375, KEK preprint 93-159, KANAZAWA-94-19, DESY 94-002, YUMS 94-22, SNUTP 94-82, to be published in Z.Phys.
    • …
    corecore