58 research outputs found
Simple Model for the Deformation-Induced Relaxation of Glassy Polymers
Glassy polymers show “strain hardening”: at constant extensional load, their flow first accelerates, then arrests. Recent experiments have found this to be accompanied by a striking and unexplained dip in the segmental relaxation time. Here we explain such behavior by combining a minimal model of flow-induced liquefaction of a glass with a description of the stress carried by strained polymers, creating a nonfactorable interplay between aging and strain-induced rejuvenation. Under constant load, liquefaction of segmental motion permits strong flow that creates polymer-borne stress. This slows the deformation enough for the segmental modes to revitrify, causing strain hardening
Internal avalanches in a pile of superconducting vortices
Using an array of miniature Hall probes, we monitored the spatiotemporal
variation of the internal magnetic induction in a superconducting niobium
sample during a slow sweep of external magnetic field. We found that a sizable
fraction of the increase in the local vortex population occurs in abrupt jumps.
The size distribution of these avalanches presents a power-law collapse on a
limited range. In contrast, at low temperatures and low fields, huge avalanches
with a typical size occur and the system does not display a well-defined
macroscopic critical current.Comment: 5 pages including 5 figure
Steady State of microemulsions in shear flow
Steady-state properties of microemulsions in shear flow are studied in the
context of a Ginzburg-Landau free-energy approach. Explicit expressions are
given for the structure factor and the time correlation function at the one
loop level of approximation. Our results predict a four-peak pattern for the
structure factor, implying the simultaneous presence of interfaces aligned with
two different orientations.
Due to the peculiar interface structure a non-monotonous relaxation of the
time correlator is also found.Comment: 5 pages, 3 figure
Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab
This white paper summarizes the scientific opportunities for utilization of
the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and
associated experimental equipment at Jefferson Lab. It is based on the 52
proposals recommended for approval by the Jefferson Lab Program Advisory
Committee.The upgraded facility will enable a new experimental program with
substantial discovery potential to address important topics in nuclear,
hadronic, and electroweak physics.Comment: 64 page
Next-to-Leading Order QCD Analysis of Polarized Deep Inelastic Scattering Data
We present a Next-to-Leading order perturbative QCD analysis of world data on
the spin dependent structure functions , and , including
the new experimental information on the dependence of . Careful
attention is paid to the experimental and theoretical uncertainties. The data
constrain the first moments of the polarized valence quark distributions, but
only qualitatively constrain the polarized sea quark and gluon distributions.
The NLO results are used to determine the dependence of the ratio
and evolve the experimental data to a constant . We
determine the first moments of the polarized structure functions of the proton
and neutron and find agreement with the Bjorken sum rule.Comment: 21 pages, 4 figures; final version to be published in Phys. Lett. B.
References updated. Uses elsart.cls version 1996/04/22, 2e-1.4
- …