1,324 research outputs found

    Using metadynamics to obtain the free energy landscape for cation diffusion in functional ceramics : dopant distribution control in rare earth-doped BaTiO3

    Get PDF
    Barium titanate is the dielectric material of choice in most multilayer ceramic capacitors (MLCCs) and thus in the production of ≈3 trillion devices every year, with an estimated global market of ≈$8330 million per year. Rare earth dopants are regularly used to reduce leakage currents and improve the MLCC lifetime. Simulations are used to investigate the ability of yttrium, dysprosium, and gadolinium to reduce leakage currents by trapping mobile oxygen defects. All the rare earths investigated trap oxygen vacancies, however, dopant pairs are more effective traps than isolated dopants. The number of trapping sites increases with the ion size of the dopant, suggesting that gadolinium should be more effective than dysprosium, which contradicts experimental data. Additional simulations on diffusion of rare earths through the lattice during sintering show that dysprosium diffuses significantly faster than the other rare earths considered. As a consequence, its greater ability to reduce oxygen migration is a combination of thermodynamics (a strong ability to trap oxygen vacancies) and kinetics (sufficient distribution of the rare earth in the lattice to intercept the migrating defects)

    Continuum Pion Production

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Risk, trust and patients’ strategic choices of healthcare practitioners

    Get PDF
    Research on patients’ choice of healthcare practitioners has focussed on countries with regulated and controlled healthcare markets. In contrast, low- and middle-income countries have a pluralistic landscape where untrained, unqualified and unlicensed informal healthcare providers (IHPs) provide significant share of services. Using qualitative data from 58 interviews in an Indian village, this paper explores how patients choose between IHPs and qualified practitioners in the public and formal private sectors. The study found that patients’ choices were structurally constrained by accessibility and affordability of care and choosing a practitioner from any sector presented some risk. Negotiation and engagement with risks depended on perceived severity of the health condition and trust in practitioners. Patients had low institutional trust in public and formal private sectors, whereas IHPs operated outside any institutional framework. Consequently, people relied on relational or competence-derived interpersonal trust. Care was sought from formal private practitioners for severe issues due to high-competence-based interpersonal trust in them, whereas for other issues IHPs were preferred due to high relationship-based interpersonal trust. The research shows that patients develop a strategic approach to practitioner choice by using trust to negotiate risks, and crucially, in low- and middle-income countries IHPs bridge a gap by providing accessible and affordable care imbued with relational–interpersonal trust

    Dynamic tilting in perovskites

    Get PDF
    A new computational analysis of tilt behaviour in perovskites is presented. This includes the development of a computational program – PALAMEDES – to extract tilt angles and the tilt phase from molecular dynamics simulations. The results are used to generate simulated selected-area electron and neutron diffraction patterns which are compared with experimental patterns for CaTiO3. The simulations not only reproduced all symmetrically allowed superlattice reflections associated with tilt but also showed local correlations that give rise to symmetrically forbidden reflections and the kinematic origin of diffuse scattering

    A computationally and cognitively plausible model of supervised and unsupervised learning

    Get PDF
    Author version made available in accordance with the publisher's policy. "The final publication is available at link.springer.com”The issue of chance correction has been discussed for many decades in the context of statistics, psychology and machine learning, with multiple measures being shown to have desirable properties, including various definitions of Kappa or Correlation, and the psychologically validated ΔP measures. In this paper, we discuss the relationships between these measures, showing that they form part of a single family of measures, and that using an appropriate measure can positively impact learning

    Recommendations for environmental baseline monitoring in areas of shale gas development

    Get PDF
    Environmental monitoring plays a key role in risk assessment and management of industrial operations where there is the potential for the release of contaminants to the environment (i.e. air and water) or for structural damage (i.e. seismicity). The shale-gas industry is one such industry. It is also new to the UK and so specific environmental regulation and other controls have been introduced only recently. Associated with this is a need to carry out monitoring to demonstrate that the management measures to minimise the risk to the environment are being effective. While much of the monitoring required is common to other industries and potentially polluting activities, there are a number of requirements specific to shale gas and to what is a new and undeveloped industry. This report presents recommendations for environmental monitoring associated with shale-gas activities and in particular the monitoring required to inform risk assessment and establish the pre-existing environmental conditions at a site and surrounding area. This baseline monitoring is essential to provide robust data and criteria for detecting any future adverse environmental changes caused by the shale-gas operations. Monitoring is therefore required throughout the lifecycle of a shale gas operation. During this lifecycle, the objectives of the monitoring will change, from baseline characterisation to operational and post-operational monitoring. Monitoring requirements will also change. This report focusses on good practice in baseline monitoring and places it in the context of the longer-term environmental monitoring programme, recognising the need to transition from the baseline condition and to establish criteria for detecting any changes within the regulatory framework. The core suite of environmental monitoring activities currently required to support regulatory compliance, i.e. meet environmental and other permit conditions, encompasses monitoring of seismicity, water quality (groundwater and surface water) and air quality. Recommendations for each of these are included in this report. Additionally, recommendations for a number of other types of environmental monitoring are included – radon in air, soil gas and ground motion (subsidence/uplift). These are not associated directly with regulatory compliance but can provide information to support interpretation of statutory monitoring results. They are also considered important for public reassurance. Health impacts arising from radon and damage caused by ground motion are both issues of public concern in relation to shale gas

    Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

    Get PDF
    Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype

    Asymmetric Bethe-Salpeter equation for pairing and condensation

    Full text link
    The Martin-Schwinger hierarchy of correlations are reexamined and the three-particle correlations are investigated under various partial summations. Besides the known approximations of screened, ladder and maximally crossed diagrams the pair-pair correlations are considered. It is shown that the recently proposed asymmetric Bethe-Salpeter equation to avoid unphysical repeated collisions is derived as a result of the hierarchical dependencies of correlations. Exceeding the parquet approximation we show that an asymmetry appears in the selfconsistent propagators. This form is superior over the symmetric selfconsistent one since it provides the Nambu-Gorkov equations and gap equation for fermions and the Beliaev equations for bosons while from the symmetric form no gap equation results. The selfenergy diagrams which account for the subtraction of unphysical repeated collisions are derived from the pair-pair correlation in the three-particle Greenfunction. It is suggested to distinguish between two types of selfconsistency, the channel-dressed propagators and the completely dressed propagators, with the help of which the asymmetric expansion completes the Ward identity and is Φ\Phi-derivable.Comment: 12 pages. 26 figure

    A Taylor Model Based Description of the proof stress of magnesium AZ31 during hot working

    Full text link
    A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path

    Preliminary assessment of the environmental baseline in the Fylde, Lancashire

    Get PDF
    This report presents the collated preliminary results from the British Geological Survey (BGS) led project Science-based environmental baseline monitoring associated with shale gas development in the Fylde, Lancashire. The project has been funded by a combination of BGS National Capability funding, in-kind contributions from project partners and a grant awarded by the Department of Business Energy and Investment Strategy (BEIS). It complements an on-going project, in which similar activities are being carried out, in the Vale of Pickering, North Yorkshire. Further information on the projects can be found on the BGS website: www.bgs.ac.uk. The project has initiated a wide-ranging environmental baseline monitoring programme that includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). The motivation behind the project(s) was to establish independent monitoring in the area around the proposed shale gas hydraulic fracturing sites in the Fylde, Lancashire (Cuadrilla Resources Ltd) before any shale gas operations take place. As part of the project, instrumentation has been deployed to measure, in real-time or near real-time, a range of environmental variables (water quality, seismicity, atmospheric composition). These data are being displayed on the project’s web site (www.bgs.ac.uk/lancashire). Additional survey, sampling and monitoring has also been carried out through a co-ordinated programme of fieldwork and laboratory analysis, which has included installation of new monitoring infrastructure, to allow compilation of one of the most comprehensive environmental datasets in the UK. The monitoring programme is continuing. However, there are already some very important findings emerging from the limited datasets which should be taken into account when developing future monitoring strategy, policy and regulation. The information is not only relevant to Lancashire but will be applicable more widely in the UK and internationally. Although shale gas operations in other parts of the world are well-established, there is a paucity of good baseline data and effective guidance on monitoring. The project will also allow the experience gained, and the scientifically-robust findings to be used, to develop and establish effective environmental monitoring strategies for shale gas and similar industrial activities
    corecore