1,177 research outputs found
An experimental study of the development of gaseous ionization at ultra high frequencies
Not availabl
Practitioner compression force variation in mammography : a 6 year study
The application of breast compression in mammography may be more heavily influenced by the practitioner
rather than the client. This could affect image quality and will affect client experience. This study builds on
previous research to establish if mammography practitioners vary in the compression force they apply over a six year period.
This longitudinal study assessed 3 consecutive analogue screens of 500 clients within one screening centre in
the UK. Recorded data included: practitioner code, applied pressure (daN), breast thickness (mm), BI-RADS®
density category and breast dose. Exclusion criteria included: previous breast surgery, previous/ongoing
assessment, breast implants. 344 met inclusion criteria. Data analysis: assessed variation of compression force
(daN) and breast thickness (mm) over 3 sequential screens to determine whether compression force and breast
thickness were affected by practitioner variations.
Compression force over the 3 screens varied significantly; variation was highly dependent upon the practitioner
who performed the mammogram. Significant thickness and compression force differences over the 3 screens
were noted for the same client (<0.0001). The amount of compression force applied was highly dependent upon
the practitioner. Practitioners fell into one of three practitioner compression groups by their compression force
mean values; high (mean 12.6daN), intermediate (mean 8.9daN) and low (mean 6.7daN).
For the same client, when the same practitioner performed the 3 screens, maximum compression force variations
were low and not significantly different (p>0.31). When practitioners from different compression force groups
performed 3 screens, maximum compression force variations were higher and significantly different (p<0.0001).
The amount of compression force used is highly dependent upon practitioner rather than client. This has
implications for radiation dose, patient experience and image quality consistency
Analysis of the vector form factors and with light-cone QCD sum rules
In this article, we calculate the vector form factors and
within the framework of the light-cone QCD sum rules
approach. The numerical values of the are compatible with the
existing theoretical calculations, the central value of the ,
, is in excellent agreement with the values from the chiral
perturbation theory and lattice QCD. The values of the are
very large comparing with the theoretical calculations and experimental data,
and can not give any reliable predictions. At large momentum transfers with
, the form factors and can
either take up the asymptotic behavior of or decrease more
quickly than , more experimental data are needed to select the
ideal sum rules.Comment: 22 pages, 16 figures, revised version, to appear in Eur. Phys. J.
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
Non-identical particle correlations in 130 and 200 AGeV collisions at STAR
STAR has performed a correlation analyses of pion-kaon and pion-proton pairs
for sqrt(s_NN)=130 AGeV and sqrt(s_NN)=200 AGeV and kaon-proton, proton-Lambda
and pion-Cascade pairs for AuAu collisions sqrt(s_NN)=200 AGeV. They show that
average emission space-time points of pions, kaons and protons are not the
same. These asymmetries are interpreted as a consequence of transverse radial
expansion of the system; emission time differences explain only part of the
asymmetry. Therefore our measurements independently confirm the existence of
transverse radial flow. Furthermore, correlations of strange hyperons is
investigated by performing proton-Lambda and pion-Cascade analyses, giving
estimates of source size at high m_{T}. The strong interaction potential
between (anti-)proton and lambda as well as kaon and proton is investigated.Comment: 5 pages, 3 figures, Quark Matter 04 proceedings, submitted to J.
Phys. G: Nucl. Phy
- …
