143 research outputs found

    Hydrology and Meteorology of the Central Alaskan Arctic: Data Collection and Analysis

    Get PDF
    The availability of environmental data for unpopulated areas of Alaska can best be described as sparse; however, these areas have resource development potential. The central Alaskan Arctic region north of the Brooks Range (referred to as the North Slope) is no exception in terms of both environmental data and resource potential. This area was the focus of considerable oil/gas exploration immediately following World War II. Unfortunately, very little environmental data were collected in parallel with the exploration. Soon after the oil discovery at Prudhoe Bay in November 1968, the U.S. Geological Survey (USGS) started collecting discharge data at three sites in the neighborhood of Prudhoe Bay and one small watershed near Barrow. However, little complementary meteorological data (like precipitation) were collected to support the streamflow observations. In 1985, through a series of funded research projects, researchers at the University of Alaska Fairbanks (UAF), Water and Environmental Research Center (WERC), began installing meteorological stations on the North Slope in the central Alaskan Arctic. The number of stations installed ranged from 1 in 1985 to 3 in 1986, 12 in 1996, 24 in 2006, 23 in 2010, and 7 in 2014. Researchers from WERC also collected hydrological data at the following streams: Imnavait Creek (1985 to present), Upper Kuparuk River (1993 to present), Putuligayuk River (1999 to present, earlier gauged by USGS), Kadleroshilik River (2006 to 2010), Shaviovik River (2006 to 2010), No Name River (2006 to 2010), Chandler River (2009 to 2013), Anaktuvuk River (2009 to 2013), Lower Itkillik River (2012 to 2013), and Upper Itkillik River (2009 to 2013). These catchments vary in size, and runoff generation can emanate from the coastal plain, the foothills or mountains, or any combination of these locations. Snowmelt runoff in late May/early June is the most significant hydrological event of the year, except at small watersheds. For these watersheds, rain/mixed snow events in July and August have produced the floods of record. Ice jams are a major concern, especially in the larger river systems. Solid cold season precipitation is mostly uniform over the area, while warm season precipitation is greater in the mountains and foothills than on the coastal plain (roughly 3:2:1, mountains:foothills: coastal plain).The results reported here are primarily for the drainages of the Itkillik, Anaktuvuk, and Chandler River basins, where a proposed transportation corridor is being considered. Results for 2011 and before can be found in earlier reports.ABSTRACT ..................................................................................................................................... i LIST OF FIGURES ........................................................................................................................ v LIST OF TABLES .......................................................................................................................... x ACKNOWLEDGMENTS AND DISCLAIMER ........................................................................ xiii CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS, AND SYMBOLS ........................................... xiv ABBREVIATIONS, ACRONYMS, AND SYMBOLS .............................................................. xvi 1 INTRODUCTION ................................................................................................................... 1 2 PRIOR RELATED PUBLICATIONS .................................................................................... 5 3 STUDY AREA ........................................................................................................................ 7 4 PREVIOUS STUDIES .......................................................................................................... 11 5 METHODOLOGY AND EQUIPMENT .............................................................................. 15 5.1 Acoustic Doppler Current Profiler ................................................................................. 17 5.2 Discharge Measurements ............................................................................................... 17 5.3 Suspended Sediments ..................................................................................................... 20 5.3.1 River Sediment ........................................................................................................ 21 5.3.2 Suspended Sediment Observations ......................................................................... 21 5.3.3 Suspended Sediment Discharge .............................................................................. 22 5.3.4 Turbidity ................................................................................................................. 23 5.3.5 Bed Sediment Distribution ...................................................................................... 23 5.3.6 Suspended Sediment Grain-Size Distribution ........................................................ 24 6 RESULTS .............................................................................................................................. 25 6.1 Air Temperature and Relative Humidity ........................................................................ 25 6.2 Wind Speed and Direction ............................................................................................. 30 6.3 Net Radiation .................................................................................................................. 38 6.4 Warm Season Precipitation ............................................................................................ 40 6.5 Cold Season Precipitation .............................................................................................. 46 6.6 Annual Precipitation ....................................................................................................... 52 6.7 Soil ................................................................................................................................. 55 6.7.1 Soil Temperature ..................................................................................................... 56 6.7.1.1 Results ................................................................................................................. 57 6.7.2 Soil Moisture ........................................................................................................... 60 6.7.2.1 Results ................................................................................................................. 61 6.8 North Slope Climatology ............................................................................................... 63 6.8.1 Air Temperature ...................................................................................................... 63 6.8.2 Precipitation ............................................................................................................ 65 6.8.2.1 Warm Season Precipitation ................................................................................. 65 6.8.2.2 Cold Season Precipitation ................................................................................... 68 6.8.2.3 Annual Total Precipitation .................................................................................. 70 6.9 Surface Water Hydrology ............................................................................................... 72 6.9.1 Itkillik River ............................................................................................................ 73 6.9.2 Upper Itkillik River ................................................................................................. 74 6.9.2.1 Dye Trace Results, Upper Itkillik River .............................................................. 81 6.9.3 Lower Itkillik River 2013 Breakup and Spring Flood ............................................ 84 6.9.4 Anaktuvuk River ..................................................................................................... 91 6.9.5 Chandler River ...................................................................................................... 100 6.9.6 Additional Field Observations .............................................................................. 107 6.10 River Sediment Results ................................................................................................ 117 6.10.1 Correlation between Isco and Depth-Integrated Samples ..................................... 117 6.10.2 Suspended Sediment Rating Curves ..................................................................... 118 6.10.3 Suspended Sediment Concentrations .................................................................... 119 6.10.4 Suspended Sediment Discharge ............................................................................ 125 6.10.5 Turbidity ............................................................................................................... 129 6.10.6 Bed Sediment Distribution .................................................................................... 134 6.10.7 Suspended Sediment Grain-Size Distribution ...................................................... 136 7 HYDROLOGIC ANALYSIS .............................................................................................. 139 7.1 Precipitation Frequency Analysis ................................................................................. 139 7.2 Manning’s Roughness Coefficient (n) Calculations Revisited .................................... 142 7.3 Hydrological Modeling ................................................................................................ 147 8 CONCLUSIONS ................................................................................................................. 157 9 REFERENCES .................................................................................................................... 163 10 APPENDICES ..................................................................................................................... 169 Appendix A – Air Temperature and Relative Humidity Appendix B – Wind Speed and Direction: Wind Roses Appendix C – Cumulative Warm Season Precipitation for All Years at Each Station and Cumulative Warm Season Precipitation by Year for All Stations, 2007 to 2013 Appendix D – Soil Temperature and Moisture Content Appendix E – Rating Curves and Discharge Measurement Summarie

    CP asymmetry in the Higgs decay into the top pair due to the stop mixing

    Full text link
    We investigate a potentially large CP violating asymmetry in the decay of a neutral scalar or pseudoscalar Higgs boson into the top-anti-top pair. The source of the CP nonconservation is the complex mixing in the (left-right) stop sector. One of the interesting consequence is the different rates of the Higgs boson decays into CP conjugate polarized states.Comment: 14 pages, 8 figures include

    Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems

    Get PDF
    We present a method for measuring single spins embedded in a solid by probing two electron systems with a single electron transistor (SET). Restrictions imposed by the Pauli Principle on allowed two electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and small textual changes. Submitted to Phys. Rev.

    A Compact Beam Stop for a Rare Kaon Decay Experiment

    Get PDF
    We describe the development and testing of a novel beam stop for use in a rare kaon decay experiment at the Brookhaven AGS. The beam stop is located inside a dipole spectrometer magnet in close proximity to straw drift chambers and intercepts a high-intensity neutral hadron beam. The design process, involving both Monte Carlo simulations and beam tests of alternative beam-stop shielding arrangements, had the goal of minimizing the leakage of particles from the beam stop and the resulting hit rates in detectors, while preserving maximum acceptance for events of interest. The beam tests consisted of measurements of rates in drift chambers, scintilation counter hodoscopes, a gas threshold Cherenkov counter, and a lead glass array. Measurements were also made with a set of specialized detectors which were sensitive to low-energy neutrons, photons, and charged particles. Comparisons are made between these measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method

    An observation of spin-valve effects in a semiconductor field effect transistor: a novel spintronic device

    Full text link
    We present the first spintronic semiconductor field effect transistor. The injector and collector contacts of this device were made from magnetic permalloy thin films with different coercive fields so that they could be magnetized either parallel or antiparallel to each other in different applied magnetic fields. The conducting medium was a two dimensional electron gas (2DEG) formed in an AlSb/InAs quantum well. Data from this device suggest that its resistance is controlled by two different types of spin-valve effect: the first occurring at the ferromagnet-2DEG interfaces; and the second occuring in direct propagation between contacts.Comment: 4 pages, 2 figure

    Quasiparticle vanishing driven by geometrical frustration

    Full text link
    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120 magnetic Neel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low energy quasiparticle excitations vanish outside the neighbourhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)^2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio

    Electronic structure of nuclear-spin-polarization-induced quantum dots

    Get PDF
    We study a system in which electrons in a two-dimensional electron gas are confined by a nonhomogeneous nuclear spin polarization. The system consists of a heterostructure that has non-zero nuclei spins. We show that in this system electrons can be confined into a dot region through a local nuclear spin polarization. The nuclear-spin-polarization-induced quantum dot has interesting properties indicating that electron energy levels are time-dependent because of the nuclear spin relaxation and diffusion processes. Electron confining potential is a solution of diffusion equation with relaxation. Experimental investigations of the time-dependence of electron energy levels will result in more information about nuclear spin interactions in solids

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995
    corecore