327 research outputs found

    95: Neulasta™ as Growth Factor Support After Autologous Stem Cell Transplantation

    Get PDF

    Molybdenum and chlorine x-ray emission from Alcator A

    Get PDF

    Intact automatic avoidance of obstacles in patients with visual form agnosia

    Get PDF
    In everyday life our reaching behaviour has to be guided not only by the location and properties of the target object, but also by the presence of potential obstacles in the workspace. Recent evidence from neglect and optic ataxia patients has suggested that this automatic obstacle avoidance is mediated by the dorsal, rather than the ventral, stream of visual processing. We tested this idea in two studies involving patients with visual form agnosia resulting from bilateral ventral-stream damage. In the first study, we asked patient DF to reach out and pick up a target object in the presence of obstacles placed at varying distances to the left or right of the target. We found that both DF and controls shifted their trajectories away from the potential obstacles and adjusted their grip aperture in such a way as to minimize risk of collision. In a second study, we asked DF and a second patient, SB, to either reach between, or to bisect the space between, two cylinders presented at varying locations. We found that both patients adjusted their reach trajectories to account for shifts in cylinder location in the reaching task, despite showing significantly worse performance than control subjects when asked to make a bisection judgement. Taken together, these data indicate that automatic obstacle avoidance behaviour is spared in our patients with visual form agnosia. We attribute their ability to the functional intactness of the dorsal stream of visual processing, and argue that the ventral stream plays no important role in automatic obstacle avoidance

    Mirror symmetry breaking through an internal degree of freedom leading to directional motion

    Full text link
    We analyze here the minimal conditions for directional motion (net flow in phase space) of a molecular motor placed on a mirror-symmetric environment and driven by a center-symmetric and time-periodic force field. The complete characterization of the deterministic limit of the dissipative dynamics of several realizations of this minimal model, reveals a complex structure in the phase diagram in parameter space, with intertwined regions of pinning (closed orbits) and directional motion. This demonstrates that the mirror-symmetry breaking which is needed for directional motion to occur, can operate through an internal degree of freedom coupled to the translational one.Comment: Accepted for publication in Phys. Rev.

    Mean first-passage time of surface-mediated diffusion in spherical domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: to appear in J. Stat. Phy

    Atomic layering at the liquid silicon surface: a first- principles simulation

    Full text link
    We simulate the liquid silicon surface with first-principles molecular dynamics in a slab geometry. We find that the atom-density profile presents a pronounced layering, similar to those observed in low-temperature liquid metals like Ga and Hg. The depth-dependent pair correlation function shows that the effect originates from directional bonding of Si atoms at the surface, and propagates into the bulk. The layering has no major effects in the electronic and dynamical properties of the system, that are very similar to those of bulk liquid Si. To our knowledge, this is the first study of a liquid surface by first-principles molecular dynamics.Comment: 4 pages, 4 figures, submitted to PR

    Kinetics of active surface-mediated diffusion in spherically symmetric domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. We generalize the results of [J. Stat. Phys. {\bf 142}, 657 (2011)] and consider a biased diffusion in a general annulus with an arbitrary number of regularly spaced targets on a partially reflecting surface. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: Published online in J. Stat. Phy

    A quantum Monte Carlo study of the one-dimensional ionic Hubbard model

    Full text link
    Quantum Monte Carlo methods are used to study a quantum phase transition in a 1D Hubbard model with a staggered ionic potential (D). Using recently formulated methods, the electronic polarization and localization are determined directly from the correlated ground state wavefunction and compared to results of previous work using exact diagonalization and Hartree-Fock. We find that the model undergoes a thermodynamic transition from a band insulator (BI) to a broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with no long-range order, we have searched for a second transition to this state by (i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U. We find no transition from the BO to MI state, and we propose that the MI state in 1D is unstable to bond ordering under the addition of any finite ionic potential. In real 1D systems the symmetric MI phase is never stable and the transition is from a symmetric BI phase to a dimerized BO phase, with a metallic point at the transition

    On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models

    Full text link
    Higher order gradient continuum theories have often been proposed as models for solids that exhibit localization of deformation (in the form of shear bands) at sufficiently high levels of strain. These models incorporate a length scale for the localized deformation zone and are either postulated or justified from micromechanical considerations. Of interest here is the consistent derivation of such models from a given microstructure and the subsequent comparison of the solution to a boundary value problem using both the exact microscopic model and the corresponding approximate higher order gradient macroscopic model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42682/1/10659_2004_Article_BF00043251.pd

    Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment

    Get PDF
    Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment
    • …
    corecore