1,223 research outputs found
Effect of level of soyhulls on finishing lamb growth efficiency and carcass merit
Objectives: To determine the effects of soyhull (SH) based diets on finishing lamb growth performance, feed efficiency and carcass merit
CHD3 Dissociation on the Kinked Pt(210) Surface: A Comparison of Experiment and Theory
To be able to simulate activated heterogeneously catalyzed reactions on the edge and corner sites of nanoparticles, a method for calculating accurate activation barriers for the reactions is required. We have recently demonstrated that a semiempirical specific reaction parameter (SRP) density functional developed to describe CHD3 dissociation on a flat Ni(111) surface is transferable to describing the same reaction on a stepped Pt(211) surface. In the current work, we compare initial sticking coefficients measured using the King and Wells beam reflectivity technique and calculated from ab initio molecular dynamics trajectories using the same SRP functional for CHD3 dissociation on a kinked Pt(210) surface at a temperature of 650 K. The calculated sticking coefficients overestimate those determined experimentally, with an average energy shift between the two curves of 13.6 kJ/mol, which is over a factor of 3 times higher than the 4.2 kJ/mol limit that defines chemical accuracy. This suggests the SRP functional predicts an activation barrier that is too low for the dissociation on the least coordinated kink atom, which is the site of the lowest energy transition state and where most of the dissociation occurs in the calculations.Article / Letter to editorLIC/ES/Theoretical Chemistr
A High Power Hydrogen Target for Parity Violation Experiments
Parity-violating electron scattering measurements on hydrogen and deuterium,
such as those underway at the Bates and CEBAF laboratories, require
luminosities exceeding cms, resulting in large beam
power deposition into cryogenic liquid. Such targets must be able to absorb 500
watts or more with minimal change in target density. A 40~cm long liquid
hydrogen target, designed to absorb 500~watts of beam power without boiling,
has been developed for the SAMPLE experiment at Bates. In recent tests with
40~A of incident beam, no evidence was seen for density fluctuations in
the target, at a sensitivity level of better than 1\%. A summary of the target
design and operational experience will be presented.Comment: 13 pages, 9 postscript figure
An Energy Feedback System for the MIT/Bates Linear Accelerator
We report the development and implementation of an energy feedback system for
the MIT/Bates Linear Accelerator Center. General requirements of the system are
described, as are the specific requirements, features, and components of the
system unique to its implementation at the Bates Laboratory. We demonstrate
that with the system in operation, energy fluctuations correlated with the 60
Hz line voltage and with drifts of thermal origin are reduced by an order of
magnitude
Transferability of the SRP32-vdW specific reaction parameter functional to CHD3 dissociation on Pt(110)-(2 × 1)
Stepped transition metal surfaces, including the reconstructed Pt(110)-(2 × 1) surface, can be used to model the effect of line defects on catalysts. We present a combined experimental and theoretical study of CHD3 dissociation on this surface. Theoretical predictions for the initial sticking coefficients, S0, are obtained from ab initio molecular dynamics calculations using the specific reaction parameter (SRP) approach to density functional (DF) theory, while the measured sticking coefficients were obtained using the King and Wells method. The SRP DF used here had been previously derived for methane dissociation on Pt(111) so that the experiments test the transferability of this SRP DF to methane + Pt(110)-(2 × 1). The agreement between the experimental and calculated S0 is poor, with the average energy shift between the theoretical and measured reactivities being 20 kJ/mol. There are two factors which may contribute to this difference, the first of which is that there is a large uncertainty in the calculated sticking coefficients due to a large number of molecules being trapped on the surface at the end of the 1 ps propagation time. The second is that the SRP32-vdW functional may not accurately describe the Pt(110)-(2 × 1) surface. At the lowest incident energies considered here, Pt(110)-(2 × 1) is more reactive than the flat Pt(111) surface, but the situation is reversed at incident energies above 100 kJ/mol.Theoretical Chemistr
Large Transverse Momenta in Statistical Models of High Energy Interactions
The creation of particles with large transverse momenta in high energy
hadronic collisions is a long standing problem. The transition from small-
(soft) to hard- parton scattering `high-pt' events is rather smooth. In this
paper we apply the non-extensive statistical framework to calculate transverse
momentum distributions of long lived hadrons created at energies from low
(sqrt(s)~10 GeV) to the highest energies available in collider experiments
(sqrt(s)~2000 GeV). Satisfactory agreement with the experimental data is
achieved. The systematic increase of the non-extensivity parameter with energy
found can be understood as phenomenological evidence for the increased role of
long range correlations in the hadronization process.
Predictions concerning the rise of average transverse momenta up to the
highest cosmic ray energies are also given and discussed.Comment: 20 pages, 10 figure
Just enough structure at the edge of chaos: Agile information system development in practice
Agile information systems development is not well understood and suffers from a lack of sustainable theories, which are based on empirical research of practice. We use a framework that focuses on the ‘edge of chaos’ as the area, where agile information systems development takes place to fill in this gap. Our study identifies for a concrete project under investigation, where the beneficial balance between stability and instability lies. It discusses the circumstances, which influence this balance and the relationships of the elements, which constitute it
Relativistic graphene ratchet on semidisk Galton board
Using extensive Monte Carlo simulations we study numerically and analytically
a photogalvanic effect, or ratchet, of directed electron transport induced by a
microwave radiation on a semidisk Galton board of antidots in graphene. A
comparison between usual two-dimensional electron gas (2DEG) and electrons in
graphene shows that ratchet currents are comparable at very low temperatures.
However, a large mean free path in graphene should allow to have a strong
ratchet transport at room temperatures. Also in graphene the ratchet transport
emerges even for unpolarized radiation. These properties open promising
possibilities for room temperature graphene based sensitive photogalvanic
detectors of microwave and terahertz radiation.Comment: 4 pages, 4 figures. Research done at Quantware
http://www.quantware.ups-tlse.fr/. More detailed analysis is give
- …