39 research outputs found

    Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma

    Get PDF
    Phosphoinositide 3-kinase (PI3K) and Myc are known to cooperate in promoting the survival and growth of a variety of B-cell lymphomas. While currently there are no small molecule inhibitors of Myc protein, histone deacetylase (HDAC) inhibitors have been shown to reduce levels of Myc protein by suppressing its transcription. We assessed the efficacy of CUDC-907, a new rationally designed dual inhibitor of PI3K and HDACs, in a panel of lymphoma cell lines. CUDC-907 treatment resulted in a dose- and time-dependent growth inhibition and cell death of DLBCL cell lines, irrespective of the cell of origin. CUDC-907 treatment down-regulated the phosphorylation of PI3K downstream targets, including AKT, PRAS40, S6, and 4EBP1, increased histone 3 acetylation, and decreased Myc protein levels. SILAC-based quantitative mass spectrometry demonstrated that CUDC-907 treatment decreased the protein levels of several components of the B cell receptor (BCR) and Toll like receptor (TLR) pathways, including BTK, SYK, and MyD88 proteins. These cellular changes were associated with an inhibition of NF-kB activation. CUDC-907 demonstrated in vivo efficacy with no significant toxicity in a human DLBCL xenograft mouse model. Collectively, these data provide a mechanistic rationale for evaluating CUDC-907 for the treatment of patients with Myc and PI3K-dependent lymphomas

    BET Inhibition-Induced GSK3β Feedback Enhances Lymphoma Vulnerability to PI3K Inhibitors

    Get PDF
    The phosphatidylinositol 3 kinase (PI3K)-glycogen synthase kinase \u3b2 (GSK3\u3b2) axis plays a central role in MYC-driven lymphomagenesis, and MYC targeting with bromodomain and extraterminal protein family inhibitors (BETi) is a promising treatment strategy in lymphoma. In a high-throughput combinatorial drug screening experiment, BETi enhance the antiproliferative effects of PI3K inhibitors in a panel of diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma cell lines. BETi or MYC silencing upregulates several PI3K pathway genes and induces GSK3\u3b2 S9 inhibitory phosphorylation, resulting in increased \u3b2-catenin protein abundance. Furthermore, BETi or MYC silencing increases GSK3\u3b2 S9 phosphorylation levels and \u3b2-catenin protein abundance through downregulating the E2 ubiquitin conjugating enzymes UBE2C and UBE2T. In a mouse xenograft DLBCL model, BETi decrease MYC, UBE2C, and UBE2T and increase phospho-GSK3\u3b2 S9 levels, enhancing the anti-proliferative effect of PI3K inhibitors. Our study reveals prosurvival feedbacks induced by BETi involving GSK3\u3b2 regulation, providing a mechanistic rationale for combination strategies. In this study, Derenzini et al. demonstrate that BET inhibitors enhance lymphoma vulnerability to PI3K inhibitors by inducing GSK3\u3b2 feedback in a MYC-dependent manner and by downregulating E2-ubiquitin conjugating enzymes, which further enhance the feedback. These data provide the rationale for combining BET and PI3K inhibitors in lymphoma therapy

    The proteomic toolbox for studying cerebrospinal fluid

    No full text
    Item does not contain fulltextCerebrospinal fluid (CSF) can be considered the most promising biosample for the discovery and analysis of biomarkers in neuroscience, an area of great medical need. CSF is a body fluid that surrounds the brain and provides a rich pool of biochemical markers, both proteomic and metabolomic, that reflect the state of neurological processes. Such biomarkers can either serve as diagnostic or prognostic biomarkers to improve the characterization of patients and preclinical disease models, or can be used to demonstrate drug-related exposure and efficacy. Here, we describe the proteomic toolbox for studying CSF from a drug-discovery perspective, and the trends and challenges that lie ahead

    The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase.

    No full text
    The NRF2 transcription factor controls a cell stress program that is implicated in cancer and there is great interest in targeting NRF2 for therapy. We show that NRF2 activity depends on Fructosamine-3-kinase (FN3K)-a kinase that triggers protein de-glycation. In its absence, NRF2 is extensively glycated, unstable, and defective at binding to small MAF proteins and transcriptional activation. Moreover, the development of hepatocellular carcinoma triggered by MYC and Keap1 inactivation depends on FN3K in vivo. N-acetyl cysteine treatment partially rescues the effects of FN3K loss on NRF2 driven tumor phenotypes indicating a key role for NRF2-mediated redox balance. Mass spectrometry reveals that other proteins undergo FN3K-sensitive glycation, including translation factors, heat shock proteins, and histones. How glycation affects their functions remains to be defined. In summary, our study reveals a surprising role for the glycation of cellular proteins and implicates FN3K as targetable modulator of NRF2 activity in cancer
    corecore