524 research outputs found

    Antihistaminic effect of Bauhinia racemosa leaves

    Get PDF
    Bauhinia racemosa Lam. (Caesalpiniaceae) leaves have been used in the treatment of asthma traditionally and we therefore undertook this study to scientifically validate its benefit in asthma using suitable animal models. Antihistaminic principles are known to be useful in the treatment of asthma; hence, in the present work, the antihistaminic activity of an ethanol extract of B. racemosa (at a dose of 50 mg/kg, i.p.) was assessed using clonidine-induced catalepsy and haloperidol-induced catalepsy in Swiss albino mice. The results showed that the ethanol extract inhibits clonidine-induced catalepsy but there is no effect on haloperidol-induced catalepsy. This suggests that the inhibition is through an antihistaminic action and that there is no role of dopamine. Hence, we concluded that the ethanol extract has significant antihistaminic activity. The polar constituents in the ethanol extract of leaves of B. racemosa may be responsible for the antihistaminic activity and B. racemosa may therefore have a role in the treatment of asthma

    The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states

    Get PDF
    The nature of the zero temperature ordering transition in the 3D Gaussian random field Ising magnet is studied numerically, aided by scaling analyses. In the ferromagnetic phase the scaling of the roughness of the domain walls, wLζw\sim L^\zeta, is consistent with the theoretical prediction ζ=2/3\zeta = 2/3. As the randomness is increased through the transition, the probability distribution of the interfacial tension of domain walls scales as for a single second order transition. At the critical point, the fractal dimensions of domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two distinct physically important fractal dimensions. These dimensions are argued to be related to combinations of the energy scaling exponent, θ\theta, which determines the violation of hyperscaling, the correlation length exponent ν\nu, and the magnetization exponent β\beta. The value β=0.017±0.005\beta = 0.017\pm 0.005 is derived from the magnetization: this estimate is supported by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating the disordered phase with one ground state from the ordered phase with two ground states. The array of results are shown to be consistent with a scaling picture and a geometric description of the influence of boundary conditions on the spins. The details of the algorithm used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure

    The differential diagnosis of chronic daily headaches: an algorithm-based approach

    Get PDF
    Chronic daily headaches (CDHs) refers to primary headaches that happen on at least 15 days per month, for 4 or more hours per day, for at least three consecutive months. The differential diagnosis of CDHs is challenging and should proceed in an orderly fashion. The approach begins with a search for “red flags” that suggest the possibility of a secondary headache. If secondary headaches that mimic CDHs are excluded, either on clinical grounds or through investigation, the next step is to classify the headaches based on the duration of attacks. If the attacks last less than 4 hours per day, a trigeminal autonomic cephalalgia (TAC) is likely. TACs include episodic and chronic cluster headache, episodic and chronic paroxysmal hemicrania, SUNCT, and hypnic headache. If the duration is ≥4 h, a CDH is likely and the differential diagnosis encompasses chronic migraine, chronic tension-type headache, new daily persistent headache and hemicrania continua. The clinical approach to diagnosing CDH is the scope of this review

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Massive Star Formation

    Full text link
    This chapter reviews progress in the field of massive star formation. It focuses on evidence for accretion and current models that invoke high accretion rates. In particular it is noted that high accretion rates will cause the massive young stellar object to have a radius much larger than its eventual main sequence radius throughout much of the accretion phase. This results in low effective temperatures which may provide the explanation as to why luminous young stellar objects do not ionized their surroundings to form ultra-compact H II regions. The transition to the ultra-compact H II region phase would then be associated with the termination of the high accretion rate phase. Objects thought to be in a transition phase are discussed and diagnostic diagrams to distinguish between massive young stellar objects and ultra-compact H II regions in terms of line widths and radio luminosity are presented.Comment: 21 pages, 6 figures, chapter in Diffuse Matter from Star Forming Regions to Active Galaxies - A Volume Honouring John Dyson, Edited by T.W. Hartquist, J. M. Pittard, and S. A. E. G. Falle. Series: Astrophysics and Space Science Proceedings. Springer Dordrecht, 2007, p.6
    corecore