106 research outputs found

    Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb

    Get PDF
    Wedetermined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex, contribute multipotent, self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ, respectively. Both populations contribute new (5-bromo-2(')-deoxyuridine- labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However, calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE- derived stem cells. Thus, different SVZ stem cells have different embryonic origins, colonize different parts of the SVZ, and generate different neuronal progeny, suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future

    Solar-Cycle Characteristics Examined in Separate Hemispheres: Phase, Gnevyshev Gap, and Length of Minimum

    Full text link
    Research results from solar-dynamo models show the northern and southern hemispheres may evolve separately throughout the solar cycle. The observed phase lag between the hemispheres provides information regarding the strength of hemispheric coupling. Using hemispheric sunspot-area and sunspot-number data from Cycles 12 - 23, we determine how out of phase the separate hemispheres are during the rising, maximum, and declining period of each solar cycle. Hemispheric phase differences range from 0 - 11, 0 - 14, and 2 - 19 months for the rising, maximum, and declining periods, respectively. The phases appear randomly distributed between zero months (in phase) and half of the rise (or decline) time of the solar cycle. An analysis of the Gnevyshev gap is conducted to determine if the double-peak is caused by the averaging of two hemispheres that are out of phase. We confirm previous findings that the Gnevyshev gap is a phenomenon that occurs in the separate hemispheres and is not due to a superposition of sunspot indices from hemispheres slightly out of phase. Cross hemispheric coupling could be strongest at solar minimum, when there are large quantities of magnetic flux at the Equator. We search for a correlation between the hemispheric phase difference near the end of the solar cycle and the length of solar-cycle minimum, but found none. Because magnetic flux diffusion across the Equator is a mechanism by which the hemispheres couple, we measured the magnetic flux crossing the Equator by examining magnetograms for Solar Cycles 21 - 23. We find, on average, a surplus of northern hemisphere magnetic flux crossing during the mid-declining phase of each solar cycle. However, we find no correlation between magnitude of magnetic flux crossing the Equator, length of solar minima, and phase lag between the hemispheres.Comment: 15 pages, 7 figure

    Multi-timescale Solar Cycles and the Possible Implications

    Full text link
    Based on analysis of the annual averaged relative sunspot number (ASN) during 1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≥\geq X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure

    Subdiffusive transport in intergranular lanes on the Sun. The Leighton model revisited

    Full text link
    In this paper we consider a random motion of magnetic bright points (MBP) associated with magnetic fields at the solar photosphere. The MBP transport in the short time range [0-20 minutes] has a subdiffusive character as the magnetic flux tends to accumulate at sinks of the flow field. Such a behavior can be rigorously described in the framework of a continuous time random walk leading to the fractional Fokker-Planck dynamics. This formalism, applied for the analysis of the solar subdiffusion of magnetic fields, generalizes the Leighton's model.Comment: 7 page

    Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles

    Full text link
    The evolution of the photospheric magnetic field during the declining phase and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the Spectromagnetograph and the 512-Channel Magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock-Leighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the activity level, as measured by total and maximum active region flux, during late Cycle 23 (after around 2004), when the southern hemisphere was more active, and Cycle 24 up to the present, when the northern hemisphere has been more active, than at any other time since 1974. The active region net proxy poloidal fields effectively disappeared in both hemispheres around 2004, and the polar fields did not become significantly stronger after this time. We see evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic

    Recovering Joys Law as a Function of Solar Cycle, Hemisphere, and Longitude

    Full text link
    Bipolar active regions in both hemispheres tend to be tilted with respect to the East West equator of the Sun in accordance with Joys law that describes the average tilt angle as a function of latitude. Mt. Wilson observatory data from 1917 to 1985 are used to analyze the active-region tilt angle as a function of solar cycle, hemisphere, and longitude, in addition to the more common dependence on latitude. Our main results are as follows: i) We recommend a revision of Joys law toward a weaker dependence on latitude (slope of 0.13 to 0.26) and without forcing the tilt to zero at the Equator. ii) We determine that the hemispheric mean tilt value of active regions varies with each solar cycle, although the noise from a stochastic process dominates and does not allow for a determination of the slope of Joys law on an 11-year time scale. iii) The hemispheric difference in mean tilt angles, 1.1 degrees + 0.27, over Cycles 16 to 21 was significant to a three-sigma level, with average tilt angles in the northern and southern hemispheres of 4.7 degrees + 0.26 and 3.6 degrees + 0.27 respectively. iv) Area-weighted mean tilt angles normalized by latitude for Cycles 15 to 21 anticorrelate with cycle strength for the southern hemisphere and whole-Sun data, confirming previous results by Dasi-Espuig, Solanki, Krivova, et al. (2010, Astron. Astrophys. 518, A7). The northern hemispheric mean tilt angles do not show a dependence on cycle strength. vi) Mean tilt angles do not show a dependence on longitude for any hemisphere or cycle. In addition, the standard deviation of the mean tilt is 29 to 31 degrees for all cycles and hemispheres indicating that the scatter is due to the same consistent process even if the mean tilt angles vary.Comment: 13 pages, 4 figures, 3 table

    Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24

    Full text link
    Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1-2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism that controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influences the solar magnetic field during this time differed in character to periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 +/- 0.3 Mm) than in 2008 (35.0 +/- 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 +/- 1 m/s in 1996; 141 +/- 1 m/s in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.Comment: 22 pages, 5 figures. Solar Physics, in pres

    From GHz to mHz: A Multiwavelength Study of the Acoustically Active 14 August 2004 M7.4 Solar Flare

    Full text link
    We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low-energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionized gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.Comment: Accepted in Solar Physic

    Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot

    Full text link
    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to (i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and (ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that (i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and (ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behaviour with the absorption being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on Helio-and-Astroseismolog

    Solar Magnetic Carpet I: Simulation of Synthetic Magnetograms

    Full text link
    This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4e16 - 1e19 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4e16 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.Comment: 33 pages, 16 figures, 5 gif movies included: movies may be viewed at http://www-solar.mcs.st-and.ac.uk/~karen/movies_paper1
    • …
    corecore