798 research outputs found

    Gene Therapy of Bone Morphogenetic Protein for Periodontal Tissue Engineering

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141217/1/jper0202.pd

    Hole-doping dependence of percolative phase separation in Pr_(0.5-delta)Ca_(0.2+delta)Sr_(0.3)MnO_(3) around half doping

    Full text link
    We address the problem of the percolative phase separation in polycrystalline samples of Pr0.5δ_{0.5-\delta}Ca0.2+δ_{0.2+\delta}Sr0.3_{0.3}MnO3_3 for 0.04δ0.04-0.04\leq \delta \leq 0.04 (hole doping nn between 0.46 and 0.54). We perform measurements of X-ray diffraction, dc magnetization, ESR, and electrical resistivity. These samples show at TCT_C a paramagnetic (PM) to ferromagnetic (FM) transition, however, we found that for n>0.50n>0.50 there is a coexistence of both of these phases below TCT_C. On lowering TT below the charge-ordering (CO) temperature TCOT_{CO} all the samples exhibit a coexistence between the FM metallic and CO (antiferromagnetic) phases. In the whole TT range the FM phase fraction (XX) decreases with increasing nn. Furthermore, we show that only for n0.50n\leq 0.50 the metallic fraction is above the critical percolation threshold XC15.5X_C\simeq 15.5%. As a consequence, these samples show very different magnetoresistance properties. In addition, for n0.50n\leq 0.50 we observe a percolative metal-insulator transition at TMIT_{MI}, and for TMI<T<TCOT_{MI}<T<T_{CO} the insulating-like behavior generated by the enlargement of XX with increasing TT is well described by the percolation law ρ1=σ(XXC)t\rho ^{-1}=\sigma \sim (X-X_C)^t, where tt is a critical exponent. On the basis of the values obtained for this exponent we discuss different possible percolation mechanisms, and suggest that a more deep understanding of geometric and dimensionality effects is needed in phase separated manganites. We present a complete TT vs nn phase diagram showing the magnetic and electric properties of the studied compound around half doping.Comment: 9 text pages + 12 figures, submitted to Phys. Rev.

    Excluded Volume Effects in the Quark Meson Coupling Model

    Full text link
    Excluded volume effects are incorporated in the quark meson coupling model to take into account in a phenomenological way the hard core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard core radii, and the equation of state becomes stiffer as the size of the hard core increases.Comment: 14 pages, revtex, 6 figure

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page

    Entanglement and Density Matrix of a Block of Spins in AKLT Model

    Full text link
    We study a 1-dimensional AKLT spin chain, consisting of spins SS in the bulk and S/2S/2 at both ends. The unique ground state of this AKLT model is described by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a contiguous block of bulk spins in this ground state. It is shown that the density matrix is a projector onto a subspace of dimension (S+1)2(S+1)^{2}. This subspace is described by non-zero eigenvalues and corresponding eigenvectors of the density matrix. We prove that for large block the von Neumann entropy coincides with Renyi entropy and is equal to ln(S+1)2\ln(S+1)^{2}.Comment: Revised version, typos corrected, references added, 31 page

    The origin of fracture in the I-ECAP of AZ31B magnesium alloy

    Get PDF
    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener–Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C

    Search for the Lepton Flavor Violation Processes J/ψJ/\psi \to μτ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψμτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψμτ,τeνˉeντJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψeτ,τμνˉμντJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψμτ)<2.0×106Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψeτ)<8.3×106Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure
    corecore