30 research outputs found

    Model- and calibration-independent test of cosmic acceleration

    Full text link
    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established.Comment: 13 pages, 2 figures, major change

    Large-scale collective motion of RFGC galaxies in curved space-time

    Full text link
    We consider large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of space-time in the Local Universe at the scale 100 Mpc/h. We analyse how the relativistic model of collective motion should be modified to provide the best possible values of parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, measurement error in HI line widths and angular diameters can easily provide such an impact. This is illustrated in a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of motion. The obtained bulk flow velocity is consistent with {\Lambda}CDM cosmology.Comment: 10 pages, 3 figures, 2 table

    Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0

    Full text link
    In this paper, instead of invoking Dark Energy, we try and fit various cosmological observations with a large Gpc scale under-dense region (Void) which is modeled by a Lemaitre-Tolman-Bondi metric that at large distances becomes a homogeneous FLRW metric. We improve on previous analyses by allowing for nonzero overall curvature, accurately computing the distance to the last-scattering surface and the observed scale of the Baryon Acoustic peaks, and investigating important effects that could arise from having nontrivial Void density profiles. We mainly focus on the WMAP 7-yr data (TT and TE), Supernova data (SDSS SN), Hubble constant measurements (HST) and Baryon Acoustic Oscillation data (SDSS and LRG). We find that the inclusion of a nonzero overall curvature drastically improves the goodness of fit of the Void model, bringing it very close to that of a homogeneous universe containing Dark Energy, while by varying the profile one can increase the value of the local Hubble parameter which has been a challenge for these models. We also try to gauge how well our model can fit the large-scale-structure data, but a comprehensive analysis will require the knowledge of perturbations on LTB metrics. The model is consistent with the CMB dipole if the observer is about 15 Mpc off the centre of the Void. Remarkably, such an off-center position may be able to account for the recent anomalous measurements of a large bulk flow from kSZ data. Finally we provide several analytical approximations in different regimes for the LTB metric, and a numerical module for CosmoMC, thus allowing for a MCMC exploration of the full parameter space.Comment: 70 pages, 12 figures, matches version accepted for publication in JCAP. References added, numerical values in tables changed due to minor bug, conclusions unaltered. Numerical module available at http://web.physik.rwth-aachen.de/download/valkenburg

    Chameleonic Generalized Brans--Dicke model and late-time acceleration

    Full text link
    In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in the framework of FRW universes. The bouncing solution and phantom crossing is investigated for the model. Two independent cosmological tests: Cosmological Redshift Drift (CRD) and distance modulus are applied to test the model with the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Transient Crossing of Phantom divide line wΛ=−1w_{\Lambda}=-1 under Gauss-Bonnet interaction

    Full text link
    Smooth double crossing of the phantom barrier wΛ=−1w_{\Lambda} = -1 has been found possible in cosmological model with Gauss-Bonnet-scalar interaction, in the presence of background cold dark matter. Such crossing has been observed to be a sufficiently late time phenomena and independent of the sign of Gauss-Bonnet-scalar interaction. The luminosity distance versus redshift curve shows a perfect fit with the ΛCDM\Lambda CDM model up to z=3.5z=3.5.Comment: 9 pages, 9 figure

    Dwarf Elliptical Galaxies

    Get PDF
    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than MB=−16M_B = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently available data can constrain 1) models for the formation of dE's, 2) the physical and evolutionary connections between different types of galaxies (nucleated and nonnucleated dE's, compact E's, irregulars, and blue compact dwarfs) that overlap in the same portion of the mass-spectrum of galaxies, 3) the contribution of dE's to the galaxy luminosity functions in clusters and the field, 4) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and 5) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.Comment: 63p, uuencoded compressed postscript, 2/8 figs included, A&A Review in press, request paper copies from [email protected], STScI 86

    Cosmic Dynamics in F(R,ϕ)F(R,\phi) Gravity

    Full text link
    In this paper we consider FRW cosmology in F(R,ϕ)F(R,\phi) gravity. It is shown that in particular cases the bouncing behavior may appears in the model whereas the equation of state (EoS) parameter may crosses the phantom divider. For the dynamical universe, quantitatively we also find parameters in the model which satisfies two independent tests:the model independent Cosmological Redshift Drift (CRD) test and the type Ia supernova luminosity distances.Comment: 15 pages, 12 figure
    corecore