1,022 research outputs found

    USAXS and x-ray microscopy investigation on silica and precursors of zeolites

    Get PDF
    Combination of SAXS and USAXS measurements provide an extended q-range (0.006-3.0/nm) to study fractal growth of both aging silica gel as well as precursors of zeolite-A. Mass (silica) and surface (zeolite) fractals are obsd. Scanning transmission X-ray microscopy (STXM) proves to be an extremely useful technique to obtain direct images of wet samples in the 0.1-100 m range, confirming the SAXS/USAXS results on even larger length scale

    Does Media Affect Learning: Where Are We Now?

    Get PDF
    It is time to extinguish the argument as to whether or not the media of 1983 could, should or would affect learning outcomes. The technological advances that have occurred in the 20 years since Clark sparked the debate and Kozma fanned the flames have made the question irrelevant. High-speed, portable, reasonably priced computers, the Internet, and the World Wide Web have changed the face of how, when, and where learning occurs. The media of 2004 does affect learning. The question is no longer if; the question is how

    Crowdfunding biodiversity conservation

    Get PDF
    Raising funds is critical for conserving biodiversity and hence so too is scrutinizing emerging financial mechanisms that might help achieve this goal. In this context, anecdotal evidence indicates crowdfunding is being used to support a variety of activities needed for biodiversity conservation, yet its magnitude and allocation remain largely unknown. We conducted a global analysis to help address this knowledge gap, based on empirical data from conservation‐focused projects extracted from crowdfunding platforms. For each project, we determined the funds raised, date, country of implementation, proponent characteristics, activity type, biodiversity realm, and target taxa. We identified 72 relevant platforms and 577 conservation‐focused projects that have raised US$4 790 634 since 2009. Whilst proponents were based in 38 countries, projects were delivered across 80 countries, indicating a potential mechanism of resource mobilization. Proponents were from non‐governmental organizations (35%), universities (30%), or were freelancers (26%). Most projects were for research (40%), persuasion (31%), and on‐ground actions (21%). Projects have focused primarily on species (57.7%) and terrestrial ecosystems (20.3%), and less on marine (8.8%) and freshwater ecosystems (3.6%). Projects have focused on 208 species, including a disproportionate number of threatened bird and mammal species. Crowdfunding for biodiversity conservation has now become a global phenomenon and presents signals for potential expansion, despite possible pitfalls. Opportunities arise from its spatial amplifying effect, steady increase over time, inclusion of Cinderella species, adoption by multiple actors, and funding of a range of activities beyond research. Our study paves the way for further research on key questions, such as campaign success rates, effectiveness, and drivers of adoption. Even though the capital input of crowdfunding so far has been modest compared to other conservation finance mechanisms, its contribution goes beyond funding research and providing capital. Embraced with due care, crowdfunding could potentially become an increasingly important financial mechanism for biodiversity conservation

    Предсказание торсионных углов в аминокислотных последовательностях белков на основе байесовской процедуры распознавания на цепях Маркова

    Get PDF
    Запропоновано процедуру розпізнавання торсіонних кутів, утворених C^α атомами чотирьох сусідніх амінокислотних залишків. Отримана послідовність кутів використовується для побудови просторової структури білка на решітці Z³.Torsion angles defined on C^α atoms of four neighbouring residues are predicted using Bayesian pattern recognition procedure on non-stationary Markov chains. The predicted sequence of torsion angles is used for constructing protein 3-dimensional structure on Z³

    Thermodynamic Description of the Relaxation of Two-Dimensional Euler Turbulence Using Tsallis Statistics

    Full text link
    Euler turbulence has been experimentally observed to relax to a metaequilibrium state that does not maximize the Boltzmann entropy, but rather seems to minimize enstrophy. We show that a recent generalization of thermodynamics and statistics due to Tsallis is capable of explaining this phenomenon in a natural way. The maximization of the generalized entropy S1/2S_{1/2} for this system leads to precisely the same profiles predicted by the Restricted Minimum Enstrophy theory of Huang and Driscoll. This makes possible the construction of a comprehensive thermodynamic description of Euler turbulence.Comment: 15 pages, RevTe

    Epidemiological, clinical and immunohistochemical aspects of canine lymphoma in the region of Porto Alegre, Brazil

    Full text link
    This paper describes the epidemiological, clinical and immunohistochemical characteristics of canine lymphomas diagnosed in the region of Porto Alegre, Brazil. Thirty dogs were enrolled in the study; most of them were male (60%), mixed-breed (23%) and middle-aged or older. The majority (87%) of affected dogs showed the multicentric form. The B-cell phenotype was most frequently detected (62%); 37% of the animals were in clinical stage IV, and 83% were classified as sub-stage "b". Lymphadenopathy was observed in 67% of the cases, and dyspnea, prostration, decreased appetite and vomiting were the most common clinical signs encountered. Anemia was a frequently encountered laboratory alteration (57%), as were leukocytosis (40%), thrombocytopenia (33%), lymphopenia (30%), hyperglobulinemia (20%) and hypercalcemia (13%). The results of this study indicate that the clinical features of dogs with lymphoma in the region of Porto Alegre are similar to those observed worldwide

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research
    corecore