38 research outputs found

    Finite temperature effects in Coulomb blockade quantum dots and signatures of spectral scrambling

    Full text link
    The conductance in Coulomb blockade quantum dots exhibits sharp peaks whose spacings fluctuate with the number of electrons. We derive the temperature-dependence of these fluctuations in the statistical regime and compare with recent experimental results. The scrambling due to Coulomb interactions of the single-particle spectrum with the addition of an electron to the dot is shown to affect the temperature-dependence of the peak spacing fluctuations. Spectral scrambling also leads to saturation in the temperature dependence of the peak-to-peak correlator, in agreement with recent experimental results. The signatures of scrambling are derived using discrete Gaussian processes, which generalize the Gaussian ensembles of random matrices to systems that depend on a discrete parameter -- in this case, the number of electrons in the dot.Comment: 14 pages, 4 eps figures included, RevTe

    Spin and interaction effects in quantum dots: a Hartree-Fock-Koopmans approach

    Full text link
    We use a Hartree-Fock-Koopmans approach to study spin and interaction effects in a diffusive or chaotic quantum dot. In particular, we derive the statistics of the spacings between successive Coulomb-blockade peaks. We include fluctuations of the matrix elements of the two-body screened interaction, surface-charge potential, and confining potential to leading order in the inverse Thouless conductance. The calculated peak-spacing distribution is compared with experimental results.Comment: 5 pages, 4 eps figures, revise

    Behavior of the giant-dipole resonance in 120^{120}Sn and 208^{208}Pb at high excitation energ

    Get PDF
    The properties of the giant-dipole resonance (GDR) are calculated as a function of excitation energy, angular momentum, and the compound nucleus particle decay width in the nuclei 120^{120}Sn and 208^{208}Pb, and are compared with recent experimental data. Differences observed in the behavior of the full-width-at-half-maximum of the GDR for 120^{120}Sn and 208^{208}Pb are attributed to the fact that shell corrections in 208^{208}Pb are stronger than in 120^{120}Sn, and favor the spherical shape at low temperatures. The effects shell corrections have on both the free energy and the moments of inertia are discussed in detail. At high temperature, the FWHM in 120^{120}Sn exhibits effects due to the evaporation width of the compound nucleus, while these effects are predicted for 208^{208}Pb.Comment: 28 pages in RevTeX plus eight postscript figures. Submitted to Nucl. Phys.

    Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections.

    Get PDF
    Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4 <sup>+</sup> and CD8 <sup>+</sup> T cells. Co-culturing CD4 <sup>+</sup> with autologous CD8 <sup>+</sup> T cells from ART-suppressed HIV <sup>+</sup> donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8 <sup>+</sup> T cells. This trispecific antibody mediates CD4 <sup>+</sup> and CD8 <sup>+</sup> T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change
    corecore