1,187 research outputs found

    Open-Ended Evolutionary Robotics: an Information Theoretic Approach

    Get PDF
    This paper is concerned with designing self-driven fitness functions for Embedded Evolutionary Robotics. The proposed approach considers the entropy of the sensori-motor stream generated by the robot controller. This entropy is computed using unsupervised learning; its maximization, achieved by an on-board evolutionary algorithm, implements a "curiosity instinct", favouring controllers visiting many diverse sensori-motor states (sms). Further, the set of sms discovered by an individual can be transmitted to its offspring, making a cultural evolution mode possible. Cumulative entropy (computed from ancestors and current individual visits to the sms) defines another self-driven fitness; its optimization implements a "discovery instinct", as it favours controllers visiting new or rare sensori-motor states. Empirical results on the benchmark problems proposed by Lehman and Stanley (2008) comparatively demonstrate the merits of the approach

    Genetic Assimilation and Canalisation in the Baldwin Effect

    No full text
    The Baldwin Effect indicates that individually learned behaviours acquired during an organism’s lifetime can influence the evolutionary path taken by a population, without any direct Lamarckian transfer of traits from phenotype to genotype. Several computational studies modelling this effect have included complications that restrict its applicability. Here we present a simplified model that is used to reveal the essential mechanisms and highlight several conceptual issues that have not been clearly defined in prior literature. In particular, we suggest that canalisation and genetic assimilation, often conflated in previous studies, are separate concepts and the former is actually not required for non-heritable phenotypic variation to guide genetic variation. Additionally, learning, often considered to be essential for the Baldwin Effect, can be replaced with a more general phenotypic plasticity model. These simplifications potentially permit the Baldwin Effect to operate in much more general circumstances

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140Ό\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01ΌHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    The role of apoptosis in the development of AGM hematopoietic stem cells revealed by Bcl-2 overexpression

    Get PDF
    Apoptosis is an essential process in embryonic tissue remodeling and adult tissue homeostasis. Within the adult hematopoietic system, it allows for tight regulation of hematopoietic cell subsets. Previously, it was shown that B-cell leukemia 2 (Bcl-2) overexpression in the adult increases the viability and activity of hematopoietic cells under normal and/or stressful conditions. However, a role for apoptosis in the embryonic hematopoietic system has not yet been established. Since the first hematopoietic stem cells (HSCs) are generated within the aortagonad-mesonephros (AGM; an actively remodeling tissue) region beginning at embryonic day 10.5, we examined this tissue for expression of apoptosis-related genes and ongoing apoptosis. Here, we show expression of several proapoptotic and antiapoptotic genes in the AGM. We also generated transgenic mice overexpressing Bcl-2 under the control of the transcriptional regulatory elements of the HSC marker stem cell antigen-1 (Sca-1), to test for the role of cell survival in the regulation of AGM HSCs. We provide evidence for increased numbers and viability of Sca-1(+) cells in the AGM and subdissected midgestation aortas, the site where HSCs are localized. Most important, our in vivo transplantation data show that Bcl-2 overexpression increases AGM and fetal liver HSC activity, strongly suggesting that apoptosis plays a role in HSC development

    Embryonal subregion-derived stromal cell lines from novel temperature-sensitive SV40 T antigen transgenic mice support hematopoiesis

    Get PDF
    Throughout life, the hematopoietic system requires a supportive microenvironment that allows for the maintenance and differentiation of hematopoietic stem cells (HSC). To understand the cellular interactions and molecules that provide these functions, investigators have previously established stromal cell lines from the late gestational stage and adult murine hematopoietic microenvironments. However, the stromal cell microenvironment that supports the emergence, expansion and maintenance of HSCs during mid-gestational stages has been largely unexplored. Since several tissues within the mouse embryo are known to harbor HSCs (i.e. aortagonads-mesonephros, yolk sac, liver), we generated numerous stromal cell clones from these mid-gestational sites. Owing to the limited cell numbers, isolations were performed with tissues from transgenic embryos containing the ts SV40 Tag gene (tsA58) under the transcriptional control of constitutive and ubiquitously expressing promoters. We report here that the growth and cloning efficiency of embryonic cells (with the exception of the aorta) is increased in the presence of the tsA58 transgene. Furthermore, our results show that the large panel of stromal clones isolated from the different embryonal subregions exhibit heterogeneity in their ability to promote murine and human hematopoietic differentiation. Despite our findings of heterogeneity in hematopoietic growth factor gene expression profiles, high-level expression of some factors may influence hematopoietic differentiation. Interestingly, a few of these stromal clones express a recently described chordin-like protein, which is an inhibitor of bone morphogenic proteins and is preferentially expressed in cells of the mesenchymal lineage

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.

    Get PDF
    Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants

    The spinorial geometry of supersymmetric heterotic string backgrounds

    Full text link
    We determine the geometry of supersymmetric heterotic string backgrounds for which all parallel spinors with respect to the connection ∇^\hat\nabla with torsion HH, the NS⊗\otimesNS three-form field strength, are Killing. We find that there are two classes of such backgrounds, the null and the timelike. The Killing spinors of the null backgrounds have stability subgroups K\ltimes\bR^8 in Spin(9,1)Spin(9,1), for K=Spin(7)K=Spin(7), SU(4), Sp(2)Sp(2), SU(2)×SU(2)SU(2)\times SU(2) and {1}\{1\}, and the Killing spinors of the timelike backgrounds have stability subgroups G2G_2, SU(3), SU(2) and {1}\{1\}. The former admit a single null ∇^\hat\nabla-parallel vector field while the latter admit a timelike and two, three, five and nine spacelike ∇^\hat\nabla-parallel vector fields, respectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family of Riemannian manifolds BB with skew-symmetric torsion. If the rotation of the null vector field vanishes, the holonomy of the connection with torsion of BB is contained in KK. The spacetime of time-like backgrounds is a principal bundle PP with fibre a Lorentzian Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion. The principal bundle is equipped with a connection λ\lambda which determines the non-horizontal part of the spacetime metric and of HH. The curvature of λ\lambda takes values in an appropriate Lie algebra constructed from that of KK. In addition dHdH has only horizontal components and contains the Pontrjagin class of PP. We have computed in all cases the Killing spinor bilinears, expressed the fluxes in terms of the geometry and determine the field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change
    • 

    corecore