650 research outputs found

    Correcting the polarization effect in low frequency Dielectric Spectroscopy

    Full text link
    We demonstrate a simple and robust methodology for measuring and analyzing the polarization impedance appearing at interface between electrodes and ionic solutions, in the frequency range from 1 to 10610^6 Hz. The method assumes no particular behavior of the electrode polarization impedance and it only makes use of the fact that the polarization effect dies out with frequency. The method allows a direct and un-biased measurement of the polarization impedance, whose behavior with the applied voltages and ionic concentration is methodically investigated. Furthermore, based on the previous findings, we propose a protocol for correcting the polarization effect in low frequency Dielectric Spectroscopy measurements of colloids. This could potentially lead to the quantitative resolution of the α\alpha-dispersion regime of live cells in suspension

    Evolutions of helical edge states in disordered HgTe/CdTe quantum wells

    Full text link
    We study the evolutions of the nonmagnetic disorder-induced edge states with the disorder strength in the HgTe/CdTe quantum wells. From the supercell band structures and wave-functions, it is clearly shown that the conducting helical edge states, which are responsible for the reported quantized conductance plateau, appear above a critical disorder strength after a gap-closing phase transition. These edge states are then found to decline with the increase of disorder strength in a stepwise pattern due to the finite-width effect, where the opposite edges couple with each other through the localized states in the bulk. This is in sharp contrast with the localization of the edge states themselves if magnetic disorders are doped which breaks the time-reversal symmetry. The size-independent boundary of the topological phase is obtained by scaling analysis, and an Anderson transition to an Anderson insulator at even stronger disorder is identified, in-between of which, a metallic phase is found to separate the two topologically distinct phases.Comment: 7 pages, 5 figure

    On the Green function of linear evolution equations for a region with a boundary

    Full text link
    We derive a closed-form expression for the Green function of linear evolution equations with the Dirichlet boundary condition for an arbitrary region, based on the singular perturbation approach to boundary problems.Comment: 9 page

    Refractive-index sensing with ultra-thin plasmonic nanotubes

    Full text link
    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure-of-merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure-of-merit

    PTPT symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum

    Full text link
    Consider in L2(Rd)L^2(R^d), d1d\geq 1, the operator family H(g):=H0+igWH(g):=H_0+igW. \ds H_0= a^\ast_1a_1+... +a^\ast_da_d+d/2 is the quantum harmonic oscillator with rational frequencies, WW a PP symmetric bounded potential, and gg a real coupling constant. We show that if g<ρ|g|<\rho, ρ\rho being an explicitly determined constant, the spectrum of H(g)H(g) is real and discrete. Moreover we show that the operator \ds H(g)=a^\ast_1 a_1+a^\ast_2a_2+ig a^\ast_2a_1 has real discrete spectrum but is not diagonalizable.Comment: 20 page
    corecore