489 research outputs found

    Awe and Wonder in Scientific Practice: Implications for the Relationship Between Science and Religion

    Get PDF
    This paper examines the role of awe and wonder in scientific practice. Drawing on evidence from psychological research and the writings of scientists and science communicators, I argue that awe and wonder play a crucial role in scientific discovery. They focus our attention on the natural world, encourage open-mindedness, diminish the self (particularly feelings of self-importance), help to accord value to the objects that are being studied, and provide a mode of understanding in the absence of full knowledge. I will flesh out implications of the role of awe and wonder in scientific discovery for debates on the relationship between science and religion. Abraham Heschel argued that awe and wonder are religious emotions because they reduce our feelings of self-importance, and thereby help to cultivate the proper reverent attitude towards God. Yet metaphysical naturalists such as Richard Dawkins insist that awe and wonder need not lead to any theistic commitments for scientists. The awe some scientists experience can be regarded as a form of non-theistic spirituality, which is neither a reductive naturalism nor theism. I will attempt to resolve the tension between these views by identifying some common ground

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVaxβ€”a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)β€”induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started

    Zebrafish Her8a Is Activated by Su(H)-Dependent Notch Signaling and Is Essential for the Inhibition of Neurogenesis

    Get PDF
    Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes

    Changes in gene expression of neo-squamous mucosa after endoscopic treatment for dysplastic Barrett’s esophagus and intramucosal adenocarcinoma

    Get PDF
    Author version made available in accordance with publisher copyright policy.Abstract Background: Endoscopic therapy, including by radiofrequency ablation (RFA) or endoscopic mucosal resection (EMR), is first line treatment for Barrett’s esophagus (BE) with high-grade dysplasia (HGD) or intramucosal cancer (IMC) and may be appropriate for some patients with low-grade dysplasia (LGD). Objective: The purpose of this study was to investigate the molecular effects of endotherapy. Methods: mRNA expression of 16 genes significantly associated with different BE stages was measured in paired pretreatment BE tissues and post-treatment neo-squamous biopsies from 36 patients treated by RFA (19 patients, 3 IMC, 4 HGD, 12 LGD) or EMR (17 patients, 4 IMC, 13 HGD). EMR was performed prior to RFA in eight patients. Normal squamous esophageal tissues were from 20 control individuals. Results: Endoscopic therapy resulted in significant change towards the normal squamous expression profile for all genes. The neo-squamous expression profile was significantly different to the normal control profile for 11 of 16 genes. Conclusion: Endotherapy results in marked changes in mRNA expression, with replacement of the disordered BE dysplasia or IMC profile with a more β€˜β€˜normal’’ profile. The neo-squamous mucosa was significantly different to the normal control squamous mucosa for most genes. The significance of this finding is uncertain but it may support continued endoscopic surveillance after successful endotherapy

    Phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC-5013 in patients with metastatic malignant melanoma and other advanced cancers

    Get PDF
    We assessed the safety, tolerability and efficacy of the immunomodulatory drug, CC-5013 (REVIMID(TM)), in the treatment of patients with metastatic malignant melanoma and other advanced cancers. A total of 20 heavily pretreated patients received a dose-escalating regimen of oral CC-5013. Maximal tolerated dose, toxicity and clinical responses were evaluated and analysis of peripheral T-cell surface markers and serum for cytokines and proangiogenic factors were performed. CC-5013 was well tolerated. In all, 87% of adverse effects were classified as grade 1 or grade 2 according to Common Toxicity Criteria and there were no serious adverse events attributable to CC-5013 treatment. Six patients failed to complete the study, three because of disease progression, two withdrew consent and one was entered inappropriately and withdrawn from the study. The remaining 14 patients completed treatment without dose reduction, with one patient achieving partial remission. Evidence of T-cell activation was indicated by significantly increased serum levels of sIL-2 receptor, granulocyte- macrophage colony-stimulating factor, interleukin-12 (IL-12), tumour necrosis factor-alpha and IL-8 in nine patients from whom serum was available. However, levels of proangiogenic factors vascular endothelial growth factor and basic foetal growth factor were not consistently affected, This study demonstrates the safety, tolerability and suggests the clinical activity of CC-5013 in the treatment of refractory malignant melanoma. Furthermore, this is the first report demonstrating T-cell stimulatory activity of this class of compound in patients with advanced cancer

    hnRNP I Inhibits Notch Signaling and Regulates Intestinal Epithelial Homeostasis in the Zebrafish

    Get PDF
    Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis
    • …
    corecore