18,281 research outputs found

    Mean flow instabilities of two-dimensional convection in strong magnetic fields

    Get PDF
    The interaction of magnetic fields with convection is of great importance in astrophysics. Two well-known aspects of the interaction are the tendency of convection cells to become narrow in the perpendicular direction when the imposed field is strong, and the occurrence of streaming instabilities involving horizontal shears. Previous studies have found that the latter instability mechanism operates only when the cells are narrow, and so we investigate the occurrence of the streaming instability for large imposed fields, when the cells are naturally narrow near onset. The basic cellular solution can be treated in the asymptotic limit as a nonlinear eigenvalue problem. In the limit of large imposed field, the instability occurs for asymptotically small Prandtl number. The determination of the stability boundary turns out to be surprisingly complicated. At leading order, the linear stability problem is the linearisation of the same nonlinear eigenvalue problem, and as a result, it is necessary to go to higher order to obtain a stability criterion. We establish that the flow can only be unstable to a horizontal mean flow if the Prandtl number is smaller than order , where B0 is the imposed magnetic field, and that the mean flow is concentrated in a horizontal jet of width in the middle of the layer. The result applies to stress-free or no-slip boundary conditions at the top and bottom of the layer

    Land-ocean shifts in tropical precipitation linked to surface temperature and humidity change

    Get PDF
    This is the final version of the article. Available from American Meteorological Society via the DOI in this record.A compositing scheme that predicts changes in tropical precipitation under climate change from changes in near-surface relative humidity (RH) and temperature is presented. As shown by earlier work, regions of high tropical precipitation in general circulation models (GCMs) are associated with high near-surface RH and temperature. Under climate change, we find that high precipitation continues to be associated with the highest surface RH and temperatures in most CMIP5 GCMs, meaning that it is the “rank” of a given GCM gridbox with respect to others that determines how much precipitation falls rather than the absolute value of surface temperature or RH change, consistent with the weak temperature gradient approximation. Further, we demonstrate that the majority of CMIP5 GCMs are close to a threshold near which reductions in land RH produce large reductions in the RH-ranking of some land regions, causing reductions in precipitation over land, particularly South America, and compensating increases over ocean. Recent work on predicting future changes in specific humidity allows us to predict the qualitative sense of precipitation change in some GCMs when land surface humidity changes are unknown. However, the magnitudes of predicted changes are too small. Further study, perhaps into the role of radiative and land-atmosphere feedbacks that we neglect, is necessary.We are grateful to Richard Allan, whose suggestions substantially improved results. We acknowledge the World Climate Research Programmes Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating sup- port and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the JASMIN and CEDA team for making available the JASMIN computing resource (Lawrence et al. 2013). FHL was part supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Part- nership (CSSP) China as part of the Newton Fund; AJF was supported by the NERC PROBEC project NE/K016016/1; RC was supported by the Newton Fund through the Met Office CSSP Brazi

    Regime Change Behaviour During Asian Monsoon Onset

    Get PDF
    This is the final version of the article. Available from American Meteorological Society via the DOI in this record.As the ITCZ moves off the equator on an aquaplanet, the Hadley circulation transitions from an equinoctial regime with two near symmetric, significantly eddy-driven cells, to a monsoon-like regime with a strong, thermally direct cross-equatorial cell, intense low-latitude precipitation, and a weak summer hemisphere cell. Dynamical feedbacks appear to accelerate the transition. This study investigates the relevance of this behavior to monsoon onset by using primitive-equation model simulations ranging from aquaplanets to more realistic configurations with Earth’s continents and topography. A change in the relationship between ITCZ latitude and overturning strength is identified once the ITCZ moves poleward of about ∼ 7 ◦ . Monsoon onset is associated with off-equatorial ascent, in regions of non-negligible planetary vorticity, and this is found to generate a vortex stretching tendency that reduces upper level absolute vorticity. In an aquaplanet, this causes a transition to the cross-equatorial, thermally direct regime, intensifying the overturning circulation. Analysis of the zonal momentum budget suggests a stationary wave, driven by topography and land-sea contrast, can trigger a similar transition in the more realistic model configuration, with the wave extending the ascent region of the Southern Hemisphere Hadley cell northward, and enhanced overturning then developing to the south. These two elements of the circulation resemble the East and South Asian monsoons.The work was supported by the UK-China Research & Innovation Partnership Fund, through the Met Office Climate Science for Service Partnership (CSSP) China, as part of the Newton Fund. GKV also acknowledges support from the Royal Society (Wolfson Foundation), the Leverhulme Trust, and NERC

    Processes and Timescales in Onset and Withdrawal of 'Aquaplanet Monsoons'

    Get PDF
    This is the final version. Available from American Meteorological Society via the DOI in this record.Data availability: The research materials supporting this publication can be accessed by contacting Ruth Geen ([email protected]).Aquaplanets with low heat capacity slab ocean boundary conditions can exhibit rapid changes in the regime of the overturning circulation over the seasonal cycle, which have been connected to the onset of Earth’s monsoons. In spring, as the ITCZ migrates off the Equator, it jumps poleward and a sudden transition occurs from an eddy-driven, equinoctial regime with two weak Hadley cells, to a near angular momentum conserving, solstitial regime with a strong, cross-equatorial winter hemisphere cell. Here, the controls on the transition latitude and rate are explored in idealised moist aquaplanet simulations. It is found that the transition remains rapid relative to the solar forcing when year length and slab ocean heat capacity are varied, and, at Earth’s rotation rate, always occurs when the ITCZ reaches approximately 7°. This transition latitude is, however, found to scale inversely with rotation rate. Interestingly, the transition rate varies non-monotonically with rotation, with a maximum at Earth’s rotation rate, suggesting that Earth may be particularly disposed to a fast monsoon onset. The fast transition relates to feedbacks in both the atmosphere and the slab ocean. In particular, an evaporative feedback between the lower-level branch of the overturning circulation and the surface temperature is identified. This accelerates monsoon onset and slows withdrawal. Lastly, comparing eddy-permitting and axisymmetric experiments shows that, in contrast with results from dry models, in this fully moist model the presence of eddies slows the migration of the ITCZ between hemispheres.UK-China Research and Innovation Partnership FundRoyal SocietyLeverhulme Trus

    A comparison between single and composite milk samples for the genetic evaluation of milk composition in dairy cattle

    Get PDF
    A simulation study was carried out to compare the use of single and composite milk samples for the evaluation of milk composition in dairy cattle. The genetic correlation between the two sampling methods was estimated. Results showed a high genetic correlation between the breeding values arrived from composite and single samples. This indicates that the same genes are possibly responsible for both traits, which makes it possible to use a single sample, instead of a composite sample, in predicting breeding values. South African Journal of Animal Science Vol.32(1) 2002: 44-4

    Quality of ultrasound biometry obtained by local health workers in a refugee camp on the Thai-Burmese border.

    Get PDF
    Objective: In a refugee camp on the Thai–Burmese border, accurate dating of pregnancy relies on ultrasound measurements obtained by locally trained health workers. The aim of this study was to substantiate the accuracy of fetal biometry measurements performed by locally trained health workers by comparing derived reference equations with those published for Asian and European hospitals. Methods: This prospective observational study included 1090 women who had a dating crown–rump length (CRL) scan and one study-appointed ultrasound biometry scan between 16 and 40 weeks of gestation. The average of two measurements of each of biparietal diameter, head circumference, abdominal circumference and femur length was used in a polynomial regression model for the mean and SD against gestational age (GA). The biometry equations obtained were compared with published equations of professional sonographers from Asian and European hospitals by evaluation of the SD and Z-scores of differences between models. Results: Reference equations of biometric parameters were found to fit cubic polynomial models. The observed SD values, for any given GA, of fetal biometric measurements obtained by locally trained health workers were lower than those previously reported by centers with professional sonographers. For nearly the entire GA range considered, the mean values of the Asian and European equations for all four biometric measurements were within the 90% expected range (mean ± 1.645 SD) of our equations. Conclusion: Locally trained health workers in a refugee camp on the Thai–Burmese border can obtain measurements that are associated with low SD values and within the normal limits of published Asian and European equations. The fact that the SD values were lower than in other studies may be explained by the use of the average of two measurements, CRL dating or motivation of the locally trained sonographer

    Hysteresis phenomenon in turbulent convection

    Full text link
    Coherent large-scale circulations of turbulent thermal convection in air have been studied experimentally in a rectangular box heated from below and cooled from above using Particle Image Velocimetry. The hysteresis phenomenon in turbulent convection was found by varying the temperature difference between the bottom and the top walls of the chamber (the Rayleigh number was changed within the range of 10710810^7 - 10^8). The hysteresis loop comprises the one-cell and two-cells flow patterns while the aspect ratio is kept constant (A=22.23A=2 - 2.23). We found that the change of the sign of the degree of the anisotropy of turbulence was accompanied by the change of the flow pattern. The developed theory of coherent structures in turbulent convection (Elperin et al. 2002; 2005) is in agreement with the experimental observations. The observed coherent structures are superimposed on a small-scale turbulent convection. The redistribution of the turbulent heat flux plays a crucial role in the formation of coherent large-scale circulations in turbulent convection.Comment: 10 pages, 9 figures, REVTEX4, Experiments in Fluids, 2006, in pres

    Estimating Depth from RGB and Sparse Sensing

    Full text link
    We present a deep model that can accurately produce dense depth maps given an RGB image with known depth at a very sparse set of pixels. The model works simultaneously for both indoor/outdoor scenes and produces state-of-the-art dense depth maps at nearly real-time speeds on both the NYUv2 and KITTI datasets. We surpass the state-of-the-art for monocular depth estimation even with depth values for only 1 out of every ~10000 image pixels, and we outperform other sparse-to-dense depth methods at all sparsity levels. With depth values for 1/256 of the image pixels, we achieve a mean absolute error of less than 1% of actual depth on indoor scenes, comparable to the performance of consumer-grade depth sensor hardware. Our experiments demonstrate that it would indeed be possible to efficiently transform sparse depth measurements obtained using e.g. lower-power depth sensors or SLAM systems into high-quality dense depth maps.Comment: European Conference on Computer Vision (ECCV) 2018. Updated to camera-ready version with additional experiment

    PROGNOSTIC TEST OF SOFA SCORE WITH THE ADDITION OF LACTATE LEVELS IN PREDICTING 28-DAY MORTALITY OF SEPSIS PATIENTS IN THE INTENSIVE CARE UNIT AT RSMH PALEMBANG

    Get PDF
    Sepsis is defined as a life-threatening organ dysfunction caused by the host's unresolved response to infection. Many scoring or biomarkers can be used as a prognostic scoring scoring. Lactate is an indirect measurement of tissue perfusion. SOFA scores and can be applied in predicting independent mortality. Also recently found an increase in SOFA along with an increase in lactate. This study aims to determine the ability of SOFA scores with addition of lactate in predicting mortality in sespsis patients. Observational analytic study with a cross- sectional design using data of sepsis patients treated from January - December 2018 at RSMH Palembang. Inclusion criteria in this study were patients who were treated in intensive care with a diagnosis of sepsis and aged > 18 years with exclusion criteria had incomplete medical record data, referral patients from other hospitals, patients treated less than 24 hours in RSMH Palembang and readmission patients to the intensive unit in the same maintenance period. SOFA scores with additional Lactate levels had a cut-off point of ? 12 with a sensitivity value of 85.0%, specificity: 85.4%, AUC: 92.8%, while the SOFA score had a cut-off point of ?7 with a sensitivity value of 80%, Specificity: 72.9%, AUC: 81.1% in predicting the 28-day mortality of sepsis patients at RSMH Palembang. There was a difference in the prognostic value of the SOFA score with the addition of lactate levels compared to the SOFA score in predicting 28-day mortality of sepsis patients in the intensive care unit of RSMH Palembang

    Diagnosing ENSO and global warming tropical precipitation shifts using surface relative humidity and temperature

    Get PDF
    This is the final version of the article. Available from American Meteorological Society via the DOI in this recordLarge uncertainty remains in future projections of tropical precipitation change under global warming. A simplified method for diagnosing tropical precipitation change is tested here on present day El Niño-Southern Oscillation (ENSO) precipitation shifts. This method, based on the weak temperature gradient approximation, assumes precipitation is associated with local surface relative humidity (RH) and air temperature (SAT), relative to the tropical mean. Observed and simulated changes in RH and SAT are subsequently used to diagnose changes in precipitation. Present day ENSO precipitation shifts are successfully diagnosed using observations (r = 0:69), and an ensemble of atmosphere-only (0:51 ≤ r ≤ 0:8) and coupled (0:5 ≤ r ≤ 0:87) climate model simulations. RH (r = 0:56) is much more influential than SAT (r = 0:27) in determining ENSO precipitation shifts for observations and climate model simulations over both land and ocean. Using inter-model differences, a significant relationship is demonstrated between method performance over ocean for present day ENSO and projected global warming (r = 0:68). As a caveat, we note that mechanisms leading to ENSO-related precipitation changes are not a direct analogue for global warming-related precipitation changes. The diagnosis method presented here demonstrates plausible mechanisms which relate changes in precipitation, RH and SAT under different climate perturbations. Therefore, uncertainty in future tropical precipitation changes may be linked with uncertainty in future RH and SAT changes.AT was supported by a NERC studentship NE/M009599/1 and CASE funding from the Met Office. FHL was part supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. RC was supported by the Newton Fund through the Met Office Climate Science for Service Partnership Brazil (CSSP Brazil)
    corecore