4,234 research outputs found

    A novel and precise time domain description of MOSFET low frequency noise due to random telegraph signals

    Full text link
    Nowadays, random telegraph signals play an important role in integrated circuit performance variability, leading for instance to failures in memory circuits. This problem is related to the successive captures and emissions of electrons at the many traps stochastically distributed at the silicon-oxide (Si-SiO2) interface of MOS transistors. In this paper we propose a novel analytical and numerical approach to statistically describe the fluctuations of current due to random telegraph signal in time domain. Our results include two distinct situations: when the density of interface trap density is uniform in energy, and when it is an u-shape curve as prescribed in literature, here described as simple quadratic function. We establish formulas for relative error as function of the parameters related to capture and emission probabilities. For a complete analysis experimental u-shape curves are used and compared with the theoretical aproach

    Nonequilibrium scaling explorations on a 2D Z(5)-symmetric model

    Get PDF
    We have investigated the dynamic critical behavior of the two-dimensional Z(5)-symmetric spin model by using short-time Monte Carlo (MC) simulations. We have obtained estimates of some critical points in its rich phase diagram and included, among the usual critical lines the study of first-order (weak) transition by looking into the order-disorder phase transition. Besides, we also investigated the soft-disorder phase transition by considering empiric methods. A study of the behavior of β/νz\beta /\nu z along the self-dual critical line has been performed and special attention has been devoted to the critical bifurcation point, or FZ (Fateev-Zamolodchikov) point. Firstly, by using a refinement method and taking into account simulations out-of-equilibrium, we were able to localize parameters of this point. In a second part of our study, we turned our attention to the behavior of the model at the early stage of its time evolution in order to find the dynamic critical exponent z as well as the static critical exponents β\beta and % \nu of the FZ-point on square lattices. The values of the static critical exponents and parameters are in good agreement with the exact results, and the dynamic critical exponent z2.28z\approx 2.28 very close of the 4-state Potts model (z2.29z\approx 2.29).Comment: 11 pages, 7 figure

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    Thermodynamics on the spectra of random matrices

    Full text link
    We show that the spectra of Wishart matrices built from magnetization time series can describe the phase transitions and the critical phenomena of the Potts model with a different number of states. We can statistically determine the transition points, independent of their order, by studying the density of the eigenvalues and corresponding fluctuations. In some way, we establish a relationship between the actual thermodynamics with the spectral thermodynamics described by the eigenvalues. The histogram of correlations between time series interestingly supports our results. In addition, we present an analogy to the study of the spectral properties of the Potts model, considering matrices correlated artificially. For such matrices, the eigenvalues are distributed in two groups that present a gap depending on such correlation.Comment: 10 pages, 11 figure

    Overcoming inertia : drivers of the outsourcing process

    Get PDF
    Almost all managers have directly or indirectly been involved in the practice of outsourcing in recent years. But as they know, outsourcing is not straightforward. Outsourcing inertia, when companies are slow to adapt to changing circumstances that accommodate higher outsourcing levels, may undermine a firm’s performance. This article investigates the presence of outsourcing inertia and the factors that help managers overcome it. Using statistical evidence, we show that positive performance effects related to outsourcing can accumulate when circumstances change. This is then followed by rapid increases in outsourcing levels (i.e. outsourcing processes). We investigate what gives rise to these outsourcing processes through follow-up interviews with sourcing executives, which suggest five drivers behind outsourcing processes: managerial initiative (using outside experience); hierarchy (foreign headquarters); imitation (of competitors and of similar firms); outsider advice (from external institutions); knowledge sources (using external information). These five drivers all offer scope for managerial action. We tie them to academic literatures and suggest ways of investigating their presence and impact on the outsourcing process. Overall, we conclude that while economizing factors play a key role in explaining how much firms outsource, it is socializing factors that tend to drive outsourcing processes
    corecore