13,266 research outputs found

    Identification of behaviour change techniques and engagement strategies to design a smartphone app to reduce alcohol consumption using a formal consensus method

    Get PDF
    Background: Digital interventions to reduce excessive alcohol consumption have the potential to have a broader reach and be more cost-effective than traditional brief interventions. However, there is not yet a strong evidence base on their ability to engage users or on their effectiveness. Objective: This study aimed to identify the behaviour change techniques (BCTs) and engagement strategies most worthy of further study by inclusion in a smartphone application (app) to reduce alcohol consumption, using formal expert consensus methods. Methods: The first phase of the study consisted of a Delphi exercise with three rounds. It was conducted with seven international experts in the field of alcohol and/or behaviour change. In the first round, experts identified BCTs most likely to be effective at reducing alcohol consumption and strategies most likely to engage users with an app; these were rated in the second round; and those rated as effective by at least four out of seven participants were ranked in the third round. The rankings were analysed using Kendall’s W coefficient of concordance, which indicates consensus between participants. The second phase consisted of a new, independent group of experts (n=43) ranking the BCTs that were identified in the first phase. The correlation between the rankings of the two groups was assessed using Spearman’s rank correlation coefficient. Results: Twelve BCTs were identified as likely to be effective. There was moderate agreement among the experts over their ranking (W=.465, χ2(11)=35.77, P<.001) and the BCTs receiving the highest mean rankings were self-monitoring, goal-setting, action planning, and feedback in relation to goals. There was a significant correlation between the ranking of the BCTs by the group of experts who identified them and a second independent group of experts (Spearman’s rho=.690, P=.01). Seventeen responses were generated for strategies likely to engage users. There was moderate agreement among experts on the ranking of these engagement strategies (W=.563, χ2(15)=59.16, P<.001) and those with the highest mean rankings were ease of use, design – aesthetic, feedback, function, design – ability to change design to suit own preferences, tailored information, and unique smartphone features. Conclusions: The BCTs with greatest potential to include in a smartphone app to reduce alcohol consumption were judged by experts to be self-monitoring, goal-setting, action planning, and feedback in relation to goals. The strategies most likely to engage users were ease of use, design, tailoring of design and information, and unique smartphone features

    Quantum thermodynamics at critical points during melting and solidification processes

    Full text link
    We systematically explore and show the existence of finite-temperature continuous quantum phase transition (CTQPT) at a critical point, namely, during solidification or melting such that the first-order thermal phase transition is a special case within CTQPT. Infact, CTQPT is related to chemical reaction where quantum fluctuation (due to wavefunction transformation) is caused by thermal energy and it can occur maximally for temperatures much higher than zero Kelvin. To extract the quantity related to CTQPT, we use the ionization energy theory and the energy-level spacing renormalization group method to derive the energy-level spacing entropy, renormalized Bose-Einstein distribution and the time-dependent specific heat capacity. This work unambiguously shows that the quantum phase transition applies for any finite temperatures.Comment: To be published in Indian Journal of Physics (Kolkata

    Oxygen and carbon isotope and Sr/Ca signatures of high-latitude Permian to Jurassic calcite fossils from New Zealand and New Caledonia

    Get PDF
    Article available online 12 November 2015This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Calcite fossils from New Zealand and New Caledonia provide insight into the Permian to Jurassic climatic history of Southern High Latitudes (southern HL) and Triassic Southern Intermediate Latitudes (southern IL). These results permit comparison with widely studied, coeval sections in Low Latitudes (LL) and IL. Oxygen isotope ratios of well-preserved shell materials indicate a partially pronounced Sea Surface Temperature (SST) gradient in the Permian, whereas for the Triassic no indication of cold climates in the southern HL is found. The Late Jurassic of New Zealand is characterized by a slight warming in the Oxfordian–Kimmeridgian and a subsequent cooling trend in the Tithonian. Systematic variations in the δ13C values of southern HL samples are in concert with those from LL sections and confirm the global nature of the carbon isotope signature and changes in the long-term carbon cycle reported earlier. Systematic changes of Sr/Ca ratios in Late Triassic brachiopods, falling from 1.19 mmol/mol in the Oretian (early Norian) to 0.67 mmol/mol in the Warepan (late Norian) and subsequently increasing to 1.10 mmol/mol in the Otapirian (~ Rhaetian), are observed. Also Sr/Ca ratios of Late Jurassic belemnite genera Belemnopsis and Hibolithes show synchronous changes in composition that may be attributed to secular variations in the seawater Sr/Ca ratio. For the two belemnite genera an increase from 1.17 mmol/mol in the Middle Heterian (~ Oxfordian) to 1.78 mmol/mol in the Mangaoran (~ late Middle Tithonian) and a subsequent decrease to 1.51 mmol/mol in the Waikatoan (~ Late Tithonian) is documented.This project was funded by the Danish Council for Independent Research– Natural Sciences (project 09-072715), the Carlsberg Foundation (project nr 2011-01-0737) provided for CK, and by the University of Copenhagen (IGN). CVU acknowledges funding from the German National Academy of Sciences – Leopoldina (grant nr LPDS 2014-08

    Ising model for distribution networks

    Full text link
    An elementary Ising spin model is proposed for demonstrating cascading failures (break-downs, blackouts, collapses, avalanches, ...) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidary environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of the model on (mainly) scale-free networks, are supplemented with analytic mean-field approximations to the geometrical random field fluctuations and the thermal spin fluctuations. The role of hubs versus poorly connected nodes in initiating the breakdown of network activity is illustrated and related to model parameters

    Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fossil brachiopods are of major importance for the reconstruction of palaeoenvironmental conditions, particularly of the Paleozoic. In order to better understand signals of ancient shell materials, modern analogue studies have to be conducted. Here we present C and O isotope data in conjunction with Mg/Ca, Sr/Ca, Mn/Ca and Fe/Ca data for nine modern rhynchonellid and terebratulid brachiopod species from tropical to intermediate latitudes and shallow to very deep marine settings. C and O isotope signals of most species suggest formation of secondary shell layers near or in isotopic equilibrium with ambient seawater. Some species – especially in the suborder Terebratellidina – show partly distinct disequilibrium signals, suggesting some degree of phylogenetic control on the expression of vital effects. Mn/Ca and Fe/Ca ratios measured in the modern species form a baseline to assess fossil preservation, but also yield environmental information. Mg/Ca and Sr/Ca ratios follow previously observed patterns, with all studied brachiopod species comprising low-Mg calcite. Strong covariation of Sr/Ca ratios with Mg/Ca ratios is only observed in rhynchonellids and possibly one terebratulid species, potentially linking the incorporation behaviour of alkaline earth metals to phylogeny. Sr/Ca show a strong negative correlation with δ13C values in terebratellidinid species which exhibit major isotopic disequilibrium and also combined data from three localities for which two species were studied indicate such a negative relation. The observed covariation of Sr/Ca ratios with δ13C values may therefore become a useful tool to detect δ13C disequilibrium and to robustly estimate δ13C values of ambient DIC in deep time.The authors acknowledge comments from two anonymous reviewers and Alberto Pérez-Huerta as well as the editor Michael E. Boettcher which helped to improve the quality and clarity of the manuscript. The authors thank the Museum für Naturkunde Berlin for providing brachiopod specimens of the species F. sanguinolenta (ZMB Bra 1934), M. venosa (ZMB Bra 2028), N. nigricans (ZMB Bra 2441), S. crosnieri (ZMB Bra 2442), C. inconspicua (ZMB Bra 2443), C. racovitzae (ZMB Bra 2444) and L. neozelanica (ZMB Bra 2445) and Andy Gale for providing specimens of T. transversa and Terebratulina sp. The authors are indebted to the crews of RV SONNE during the cruises SO 168 ZEALANDIA and SO 233 WALVIS 2 and their respective shipboard scientific parties. Financial support by the German Ministry of Education and Research (BMBF) within the project SO 168 ZEALANDIA (FKZ: 03G0168) and SO 233 WALVIS 2 (FKZ: 03G0233A) to CL is gratefully acknowledged. CVU acknowledges funding from the Leopoldina – German National Academy of Sciences (grant no. LPDS 2014-08)

    Asymmetry to symmetry transition of Fano line-shape: Analytical derivation

    Full text link
    An analytical derivation of Fano line-shape asymmetry ratio has been presented here for a general case. It is shown that Fano line-shape becomes less asymmetric as \q is increased and finally becomes completely symmetric in the limiting condition of q equal to infinity. Asymmetry ratios of Fano line-shapes have been calculated and are found to be in good consonance with the reported expressions for asymmetry ratio as a function of Fano parameter. Application of this derivation is also mentioned for explanation of asymmetry to symmetry transition of Fano line-shape in quantum confined silicon nanostructures.Comment: 3 figures, Latex files, Theoretica

    Left Ventricular Assist Device Flow Pattern Analysis Using a Novel Model Incorporating Left Ventricular Pulsatility

    Get PDF
    Our current understanding of flow through the circuit of left ventricular assist device (LVAD), left ventricle and ascending aorta remains incompletely understood. Computational fluid dynamics, which allow for analysis of flow in the cardiovascular system, have been used for this purpose, although current simulation models have failed to fully incorporate the interplay between the pulsatile left ventricle and continuous-flow generated by the LVAD. Flow-through the LVAD is dependent on the interaction between device and patient-specific factors with suboptimal flow patterns evoking increased risk of LVAD-related complications. Computational fluid dynamics can be used to analyze how different pump and patient factors affect flow patterns in the left ventricle and the aorta. Computational fluid dynamics simulations were carried out on a patient with a HeartMate II. Simulations were also conducted for theoretical scenarios substituting HeartWare HVAD, HeartMate 3 (HM3) in continuous mode and HM3 with Artificial Pulse. An anatomical model of the patient was reconstructed from computed tomography (CT) images, and the LVAD outflow was used as the inflow boundary condition. The LVAD outflow was calculated separately using a lumped-parameter-model of the systemic circulation, which was calibrated to the patient based on the patient-specific ventricular volume change reconstructed from 4 dimensional computed tomography and pulmonary capillary wedge pressure tracings. The LVADs were implemented in the lumped-parameter-model via published pressure head versus flow (H-Q) curves. To quantify the flushing effect, virtual contrast agent was released in the ascending aorta and its flushing over the cycles was quantified. Shear stress acting on the aortic endothelium and shear rate in the bloodstream were also quantified as indicators of normal/abnormal blood flow, especially the latter being a biomarker of platelet activation and hemolysis. LVAD speeds for the HVAD and HM3 were selected to match flow rates for the patient’s HMII (9,000 RPM for HMII, 5,500 RPM for HM3, and 2,200 RPM for HVAD), the cardiac outputs were 5.81 L/min, 5.83 L/min, and 5.92 L/min, respectively. The velocity of blood flow in the outflow cannula was higher in the HVAD than in the two HeartMate pumps with a cycle average (range) of 0.92 m/s (0.78–1.19 m/s), 0.91 m/s (0.86–1.00 m/s), and 1.74 m/s (1.40–2.24 m/s) for HMII, HM3, and HVAD, respectively. Artificial pulse increased the peak flow rate to 9.84 L/min for the HM3 but the overall cardiac output was 5.96 L/min, which was similar to the continuous mode. Artificial pulse markedly decreased blood stagnation in the ascending aorta; after six cardiac cycles, 48% of the blood was flushed out from the ascending aorta under the continuous operation mode while 60% was flushed under artificial pulse. Shear stress and shear rate in the aortic arch were higher with the HVAD compared to the HMII and HM3, respectively (shear stress: 1.76 vs. 1.33 vs. 1.33 Pa, shear rate: 136 vs. 91.5 vs. 89.4 s–1). Pump-specific factors such as LVAD type and programmed flow algorithms lead to unique flow patterns which influence blood stagnation, shear stress, and platelet activation. The pump-patient interaction can be studied using a novel computational fluid dynamics model to better understand and potentially mitigate the risk of downstream LVAD complications

    Estimating effectiveness of components of a smartphone app – Drink Less – to reduce excessive alcohol consumption

    Get PDF
    Background: Smartphone apps have the potential to help drinkers reduce hazardous and harmful alcohol consumption. However, there have been few evaluations of the effectiveness of these apps and none to our knowledge that estimates the effects of individual intervention components. This study aimed to evaluate the effectiveness of intervention components of an alcohol reduction app, Drink Less. Materials and Methods: Drink Less is a freely available app to any individual in the UK making an attempt to reduce their drinking. The app was structured around goal setting with information on the UK drinking guidelines, units and alcohol-related harms. The app offered access to five additional intervention modules – Normative Feedback, Cognitive Bias Re-training, Self-monitoring and Feedback, Action Planning and Identity Change – to help them achieve their goal. Excessive drinkers (AUDIT >=8) who were aged 18+ were orthogonally randomised to receive ‘enhanced’ or ‘minimal’ versions of each of the five modules (to a total of 25 experimental conditions). The primary outcome measure was change in past week consumption at one-month follow-up. Secondary measures were change in AUDIT score, usage data and usability ratings. A factorial between-subjects ANOVA assessed main and interactive effects of the app modules using an intention-to-treat analysis. Results: Of 672 study participants, 27% responded to follow-up. At baseline, the mean past week consumption was 39.9 units (SD=27.34) and mean AUDIT score was 19.1 (SD=6.56). There were no significant main effects of the intervention modules on either measure. There were two-way interactions between enhanced Self-monitoring and Feedback and Action Planning on AUDIT score (F=5.818, p=0.016) and between enhanced Normative Feedback and Cognitive Bias Re-training on past week consumption (F=4.676, p=0.031). Enhanced Self-monitoring and Feedback was used more often and rated more positively for helpfulness, satisfaction and recommendation than the minimal version. Conclusions: Individual enhanced modules were not more effective compared with their minimal condition. The combinations of Self-monitoring and Feedback with Action Planning, and Normative Feedback with Cognitive Bias Re-training resulted in significant reductions in alcohol-related outcomes when both modules were enhanced. Users rated the Self-monitoring and Feedback module significantly more positively when it was enhanced
    • …
    corecore