45,831 research outputs found

    Modelling of reduced GB transmission system in PSCAD/EMTDC

    Get PDF
    Energy and environmental issues are two of the greatest challenges facing the world today. In response to energy needs and environmental concerns, renewable energy technologies are now considered the future technologies of choice. Renewable energy is produced from natural sources that are clean and free; however, it is widely accepted that renewable energy is not a solution without challenges. An example of this can be seen in the UK, where there is much interest amongst generation developers in the construction of new large scale onshore and offshore wind farms, especially in Scotland. The stability of electric power systems is also an important issue. It is important to have full knowledge of the system and to be able to predict the behaviour under different situations is an important objective. As a result, several industrial grade power system simulator tools have been developed in order to estimate the behaviour of the electric power system under certain conditions. This paper presents a reduced Great Britain (GB) system model for stability analysis using PSCAD/EMTDC. The reduced model is based upon a future GB transmission system model and, hence, contains different types and mix of generation, HVDC transmission lines and additional interconnection. The model is based on the reduced DIgSILENT PowerFactory model developed by National Grid

    Set-up effects of piles in sand tested in the centrifuge

    Get PDF
    The bearing capacity of piles increases over time. Research has shown that this is caused by an increase in shaft friction combined with a constant or only slightly increasing base capacity. Although there are some ideas on the mechanisms that play a role there is no quantitative model to describe this mechanism. From the literature the shaft friction seems to increase linearly with the logarithm of time. For piles in the field this is proven by load tests performed between 1 until approximately 1000 days after installation. Literature indicates that set-up as a function of time is also present minutes and hours after installation. This allows investigating the set-up mechanisms under controlled conditions in a centrifuge. Therefore two test series have been performed to investigate the set-up for a single pile and a pile group. This paper presents the relevant literature and describes the position of the tests in the on-going research program on piles in The Netherlands. Furthermore, the results will be described and discussed. Time dependency in bearing capacity in sand can be observed in the centrifuge tests, although it is not certain whether some of the increase has not been caused by other mechanisms. It appears that the testing conditions as well as the effects of installation of neighboring piles are of great importance on the time effects

    A hybrid evaluation approach and guidance for mHealth education applications

    Get PDF
    © Springer International Publishing AG 2018. Mobile health education applications (MHEAs) are used to support different users. However, although these applications are increasing in number, there is no effective evaluation framework to measure their usability and thus save effort and time for their many user groups. This paper outlines a useful framework for evaluating MHEAs, together with particular evaluation metrics: an efficient hybrid of selected heuristic evaluation (HE) and usability evaluation (UE) factors to enable the determination of the usefulness and usability of MHEAs. We also propose a guidance tool to help stakeholders choose the most suitable MHEA. The outcome of this framework is envisioned as meeting the requirements of different users, in addition to enhancing the development of MHEAs using software engineering approaches by creating new and more effective evaluation techniques. Finally, we present qualitative and quantitative results for the framework when used with MHEAs

    Handbook of Renewable Energy Technology

    Get PDF
    Effects of environmental, economic, social, political and technical factors have led to the rapid deployment of various sources of renewable energy-based power generation. The incorporation of these generation technologies have led to the development of a broad array of new methods and tools to integrate this new form of generation into the power system network. This book, arranged into six sections, highlights various renewable energy based generation technologies, and consists a series of papers written by experts in their respective fields of specialization. The Handbook of Renewable Energy Technology will be of great practical benefit to professionals, scientists and researchers in the relevant industries, and will be of interest to those of the general public wanting to know more about renewable energy technologies

    Testing homogeneity with the fossil record of galaxies

    Get PDF
    The standard Friedmann model of cosmology is based on the Copernican Principle, i.e. the assumption of a homogeneous background on which structure forms via perturbations. Homogeneity underpins both general relativistic and modified gravity models and is central to the way in which we interpret observations of the CMB and the galaxy distribution. It is therefore important to probe homogeneity via observations. We describe a test based on the fossil record of distant galaxies: if we can reconstruct key intrinsic properties of galaxies as functions of proper time along their worldlines, we can compare such properties at the same proper time for our galaxy and others. We achieve this by computing the lookback time using radial Baryon Acoustic Oscillations, and the time along galaxy world line using stellar physics, allowing us to probe homogeneity, in principle anywhere inside the past light cone. Agreement in the results would be an important consistency test -- although it would not in itself prove homogeneity. Any significant deviation in the results however would signal a breakdown of homogeneity.Comment: Accepted for publication in JCAP. Matches published version. Minor changes: ref. added and longer discussion on performing the test observationally. Results unchange

    Mathematical Modelling of Optical Coherence Tomography

    Full text link
    In this chapter a general mathematical model of Optical Coherence Tomography (OCT) is presented on the basis of the electromagnetic theory. OCT produces high resolution images of the inner structure of biological tissues. Images are obtained by measuring the time delay and the intensity of the backscattered light from the sample considering also the coherence properties of light. The scattering problem is considered for a weakly scattering medium located far enough from the detector. The inverse problem is to reconstruct the susceptibility of the medium given the measurements for different positions of the mirror. Different approaches are addressed depending on the different assumptions made about the optical properties of the sample. This procedure is applied to a full field OCT system and an extension to standard (time and frequency domain) OCT is briefly presented.Comment: 28 pages, 5 figures, book chapte

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within \sim10 stellar radii (\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet

    Intravitreal injection of Ozurdex(®) implant in patients with persistent diabetic macular edema, with six-month follow-up

    Get PDF
    AIM: To evaluate the efficacy of intravitreal dexamethasone injections in diabetic macular edema (DME). METHODS: A 700 μg slow-release intravitreal dexamethasone implant (Ozurdex®) was placed in the vitreal cavity of 17 patients (19 eyes) affected with persistent DME. Best corrected visual acuity (BCVA) was assessed through Early Treatment Diabetic Retinopathy Study (ETDRS). Central macular thickness (CMT) was measured by spectral-domain optical coherence tomography. BCVA and CMT examinations were carried out at baseline (T0) and repeated after three days, one month (T1), three months (T3), four months (T4), and six months (T6) post injection. RESULTS: Dexamethasone implant induced an improvement in ETDRS at T1, T3, T4, and T6 post injection. CMT was reduced at T1, T3, and T4, while at T6, CMT values were not statistically different from baseline. No complications were observed during the follow-up. CONCLUSION: Our data suggest that dexamethasone implant is effective in reducing DME symptoms within a six-month frame

    Slow light in paraffin-coated Rb vapor cells

    Full text link
    We present preliminary results from an experimental study of slow light in anti-relaxation-coated Rb vapor cells, and describe the construction and testing of such cells. The slow ground state decoherence rate allowed by coated cell walls leads to a dual-structured electromagnetically induced transparency (EIT) spectrum with a very narrow (<100 Hz) transparency peak on top of a broad pedestal. Such dual-structure EIT permits optical probe pulses to propagate with greatly reduced group velocity on two time scales. We discuss ongoing efforts to optimize the pulse delay in such coated cell systems.Comment: 6 pages, 6 figures, submitted to Journal of Modern Optic

    Data Descriptor: A genome-scale RNAi screen for genetic interactors of the dynein co-factor nud-2 in Caenorhabditis elegans

    Get PDF
    Cytoplasmic dynein 1 (dynein) is the predominant microtubule minus end-directed motor in animals and participates in a wide range of cellular processes, including membrane trafficking, nuclear migration, and cell division. Dynein's functional diversity depends on co-factors that regulate its subcellular localization, interaction with cargo, and motor activity. The ubiquitous co-factor nuclear distribution gene E (NudE) is implicated in many of dynein's functions, and mutations in NudE cause the brain developmental disease microcephaly. To identify genetic interactors of the Caenorhabditis elegans NudE homolog nud-2, we performed a genome-wide RNAi screen with the null allele nud-2(ok949), which compromises dynein function but leaves animals viable and fertile. Using bacterial feeding to deliver dsRNAs in a 96-well liquid format and a semi-automated fluorescence microscopy approach for counting parents and progeny, we screened 19762 bacterial clones and identified 38 genes whose inhibition caused enhanced lethality in nud-2(ok949) relative to the nud-2(+) control. Further study of these genes, many of which participate in cell division, promises to provide insight into the function and regulation of dynein.The authors acknowledge the support of the BioSciences Screening i3S Scientific Platform. Funding for this project was provided by the European Research Council under the European Union's Seventh Framework Programme (ERC grant agreement n o ERC-2013-StG-338410-DYNEINOME to R.G.), by the European Molecular Biology Organization (EMBO Installation Grant 2545 to R.G.), by the Fundacao para a Ciencia e a Tecnologia (IF/01015/2013/CP1157/CT0006 to R.G. and SFRH/BD/103495/2014 to H. R.), and by 'Norte-01-0145-FEDER-000029-Advancing cancer research: from basic knowledge to application', supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement through the European Regional Development Fund (FEDER
    corecore