7,245 research outputs found

    PHYCOERYTHROCYANINS FROM Westiellopsis prolifica AND Nostoc rivulare: CHARACTERIZATION OF THE PHYCOVIOLOBILIN CHROMOPHORE IN BOTH STATES

    Get PDF
    Phycoerythrocyanin or fractions enriched in it have been isolated from the filamentous cyanobacteria, Westiellopsis prolifica ARM 365 and Nostoc rivulare ARM 212. Both show the photoreversible photochromism (difference maxima at 503 and 570 nm) characteristic of this pigment, which is related to the phycoviolobilin chromophore on the α-subunit. Native phycoerythrocyanin and its β-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores absorb maximally. Instead the phycocyanobilin chromophores are bleached irreversibly. At the same time, the data show that reversible photochemistry is a useful analytical tool to detect phycoerythrocyanin in cyanobacterial extracts. Fluorescence measurements indicate that: (i) the 510 nm absorbing isomer of the violobilin chromophore has only little fluorescence; and (ii) the energy transfer from the violobilin chromophores to the cyanin chromophores is efficient only in the 570 nm form

    Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States

    Get PDF
    For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach

    Negative thermal expansion in the plateau state of a magnetically-frustrated spinel

    Get PDF
    We report on negative thermal expansion (NTE) in the high-field, half-magnetization plateau phase of the frustrated magnetic insulator CdCr2O4. Using dilatometry, we precisely map the phase diagram at fields of up to 30T, and identify a strong NTE associated with the collinear half-magnetization plateau for B > 27T. The resulting phase diagram is compared with a microscopic theory for spin-lattice coupling, and the origin of the NTE is identified as a large negative change in magnetization with temperature, coming from a nearly-localised band of spin excitations in the plateau phase. These results provide useful guidelines for the discovery of new NTE materials.Comment: 6 pages, 2 figure

    Kaehler Manifolds of Quasi-Constant Holomorphic Sectional Curvatures

    Full text link
    The Kaehler manifolds of quasi-constant holomorphic sectional curvatures are introduced as Kaehler manifolds with complex distribution of codimension two, whose holomorphic sectional curvature only depends on the corresponding point and the geometric angle, associated with the section. A curvature identity characterizing such manifolds is found. The biconformal group of transformations whose elements transform Kaehler metrics into Kaehler ones is introduced and biconformal tensor invariants are obtained. This makes it possible to classify the manifolds under consideration locally. The class of locally biconformal flat Kaehler metrics is shown to be exactly the class of Kaehler metrics whose potential function is only a function of the distance from the origin in complex Euclidean space. Finally we show that any rotational even dimensional hypersurface carries locally a natural Kaehler structure, which is of quasi-constant holomorphic sectional curvatures.Comment: 36 page

    Neighborhoods of trees in circular orderings

    Get PDF
    In phylogenetics, a common strategy used to construct an evolutionary tree for a set of species X is to search in the space of all such trees for one that optimizes some given score function (such as the minimum evolution, parsimony or likelihood score). As this can be computationally intensive, it was recently proposed to restrict such searches to the set of all those trees that are compatible with some circular ordering of the set X. To inform the design of efficient algorithms to perform such searches, it is therefore of interest to find bounds for the number of trees compatible with a fixed ordering in the neighborhood of a tree that is determined by certain tree operations commonly used to search for trees: the nearest neighbor interchange (nni), the subtree prune and regraft (spr) and the tree bisection and reconnection (tbr) operations. We show that the size of such a neighborhood of a binary tree associated with the nni operation is independent of the tree’s topology, but that this is not the case for the spr and tbr operations. We also give tight upper and lower bounds for the size of the neighborhood of a binary tree for the spr and tbr operations and characterize those trees for which these bounds are attained

    FLUORESCENCE AND CIRCULAR DICHROISM STUDIES ON THE PHYCOERYTHROCYANINS FROM THE CYANOBACTERIUM

    Get PDF
    Two phycoerythrocyanin (PEC) fractions have been obtained from the phycobilisomes of the cyanobac-terium Westiellopsis prolifica ARM 365. They have been characterized by absorption, fluorescence and circular dichroism spectroscopy. One of them is spectroscopically similar to a PEC trimer known from other organisms. Whereas efficient energy transfer from its violin (α-84) to the cyanin (β-84, 155) chromophores is efficient in the trimer (αβ it is impeded after dissociation to the monomer (α,β). A second fraction of PEC which we earlier termed PEC(X) (Maruthi Sai et al., Photochem. Photobiol. 55,119–124, 1992), exhibited the spectral properties similar to that of the α-subunit of PEC from Mastigocladus laminosus. With this highly photoactive fraction, the circular dichroism spectra of the violobilin chromophore in both photoreversible states were obtained

    Effect of farm system and milk urea phenotype on milk yield and milk composition of dairy cows in Canterbury

    Get PDF
    To investigate the effect of farm system, and cow selection for milk urea nitrogen (MUN), on milk yield and milk composition, a farmlet study was carried out between October 2018 and May 2019 in Lincoln, Canterbury. A farm system with a low stocking rate and low N fertiliser input (LSR, 2.9 cows/ha) sown with a conventional ryegrass clover and plantain diverse pastures was compared with a farm system with a moderate stocking rate and moderate N fertiliser (MSR, 3.9 cows/ha) using conventional ryegrass and white clover pastures and supplementing 3 kg DM/cow/d as crushed barley grain. Each farmlet had total herd size of 40 mixed-age HF x J spring-calving dairy cows which included six cows selected solely for a high MUN or a low MUN. There was no effect of farm system on milk fat, protein or lactose content but MUN was lower in LSR compared with MSR. Milk production was also lower for LSR (466 vs 429±12.4 kg MS/cow/ha, P<0.05), owing to poorer quality diet in mid lactation. Cows selected for low MUN tended to produce less milk compared with high MUN cows (4478 vs 3987±174 kg/cow, P<0.10) though this was partially offset by increased protein content in milk of low MUN cows. Farm system and animal selection for MUN have a greater impact on milk yield than on milk composition

    The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae

    Get PDF
    Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201
    corecore