108 research outputs found

    The Effects of Group Essence Survival on Group Morale

    Get PDF
    Morale has been defined as, the capacity of a group of people to pull together persistently and consistently in pursuit of a common purpose (Leighton, 1949, p. 78). What is missing in our understanding of morale is knowing precisely what generates, increases, and decreases morale. One purpose of the current project is to explore these aspects of morale. Specifically, one factor that may boost or drive morale is the survival of the group\u27s identity, or common purpose. The essence of a group includes their values, ideals, and identity that may live on even after current members of the group no longer exists. Although previous research identifies several components of morale and how to measure the concept, previous frameworks of group morale (Hocking, 1941 Peterson, Park, & Sweeney, 2008) have not been empirically validated. Using a systematic approach, a study has been designed to use as a starting point in empirically studying morale so valid conclusions can be reached. In the current study, participants were led to believe that the essence of a group they belong to (their city) is threatened, or that the essence of their group (city) is undergoing a new sense of vitality. In a third condition, participants were not given any information related to the status of the essence of their city. It was predicted that participants who were reminded about the survival of their group\u27s essence would experience an increase in group morale compared to those who were not reminded about group essence survival or were lead to believe their group\u27s essence is threatened. Partial support was found in support of the hypothesis, and additional evidence implying that morale is specifically related to the vitality of the group\u27s essence was also obtained. These findings provide a valid starting point for an updated framework of group moral

    Exposure Keratopathy in the Intensive Care Unit: Do Not Neglect the Unseen

    Get PDF
    Exposure keratopathy (EK) is a frequently overlooked complication seen in nearly 60% of sedated or intubated intensive care unit (ICU) patients. Signs and symptoms of EK often start as mild subjective complaints of eye pain and irritation, but can progress to vision loss in the most severe cases. For many critically ill patients, the presence of sedation effectively precludes their ability to communicate clinical complaints typically associated with EK. This, combined with the potentially severe sequelae, makes EK a potentially preventable complication and a patient safety issue. Clinical management of EK can be challenging for both providers and patients due to the nature of treatment with eye drops and ointments as well as the burden and expense of associated procedural interventions. Risk factors for EK have been extensively described in the literature, and wider dissemination of this knowledge should facilitate education of physicians and nurses regarding EK prevention. The most common risk factors include lagophthalmos, chemosis, Bell’s palsy, and congenital deformities. Additionally, critically ill patients are less likely to be promptly diagnosed due to the focus of staff on life-threatening problems over ocular prophylaxis. However, the potential severity of complications associated with EK mandates that prevention remains a crucial component of the care of at-risk patients. The reader will explore the broad category of adverse medical occurrences included under the umbrella term, “errors of omission” (EOO): an error category that is most likely to culminate in EK. The most critical preventive measure is education of health care providers, although this may not be enough by itself. To this end, universal precautions against EK in combination with education may be used to help combat the relatively high incidence of this easily preventable ocular pathology

    Septic Embolism: A Potentially Devastating Complication of Infective Endocarditis

    Get PDF
    Infective endocarditis is associated with significant cardiac and noncardiac morbidity. Among many complications, septic embolism has the potential of causing devastating sequelae and even life-threatening clinical situations. This dreaded clinico-pathologic entity is characterized by its heterogeneous presentation and the ability to affect various body systems and organs. Septic emboli to the brain, kidneys, spleen, and the pulmonary system constitute the vast majority of metastatic infections. However, other organ systems can also be affected. This chapter provides an overview of septic embolism associated with infective endocarditis, focusing on key diagnostic and therapeutic considerations in the most commonly seen and clinically relevant scenarios

    Laser-driven plasma waves in capillary tubes

    Full text link
    The excitation of plasma waves over a length of up to 8 centimeters is, for the first time, demon- strated using laser guiding of intense laser pulses through hydrogen filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift, measured as a function of filling pressure, capillary tube length and incident laser energy, is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range 1 -10 GV/m

    Foreign Intravascular Object Embolization and Migration: Bullets, Catheters, Wires, Stents, Filters, and More

    Get PDF
    Foreign intravascular object embolization (FIOE) is an important, yet underreported occurrence that has been described in a variety of settings, from penetrating trauma to intravascular procedures. In this chapter, the authors will review the most common types of FIOEs, including bullet or “projectile” embolism (BPE), followed by intravascular catheter or wire embolization (ICWE), and conclude with intravascular noncatheter object (e.g., coil, gelatin, stent, and venous filter) migration (INCOM). In addition to detailed topic-based summaries, tables highlighting selected references and case scenarios are also presented to provide the reader with a resource for future research in this clinical area

    Thermosensitivity of the Saccharomyces cerevisiae gpp1gpp2 double deletion strain can be reduced by overexpression of genes involved in cell wall maintenance

    Get PDF
    A Saccharomyces cerevisiae strain in which the GPP1 and GPP2 genes, both encoding glycerol-3-phosphate phosphatase isoforms, are deleted, displays both osmo- and thermosensitive (ts) phenotypes. We isolated genes involved in cell wall maintenance as multicopy suppressors of the gpp1gpp2 ts phenotype. We found that the gpp1gpp2 strain is hypersensitive to cell wall stress such as treatment with β-1,3-glucanase containing cocktail Zymolyase and chitin-binding dye Calcofluor-white (CFW). Sensitivity to Zymolyase was rescued by overexpression of SSD1, while CFW sensitivity was rescued by SSD1, FLO8 and WSC3-genes isolated as multicopy suppressors of the gpp1gpp2 ts phenotype. Some of the isolated suppressor genes (SSD1, FLO8) also rescued the lytic phenotype of slt2 deletion strain. Additionally, the sensitivity to CFW was reduced when the cells were supplied with glycerol. Both growth on glycerol-based medium and overexpression of SSD1, FLO8 or WSC3 had additive suppressing effect on CFW sensitivity of the gpp1gpp2 mutant strain. We also confirmed that the internal glycerol level changed in cells exposed to cell wall perturbation. © 2007 Springer-Verlag

    Lymphocytes of Type 2 Diabetic Women Carry a High Load of Stable Chromosomal Aberrations : A Novel Risk Factor for Disease-Related Early Death

    Get PDF
    OBJECTIVE—Diabetes is associated with an increased risk of death in women. Oxidative stress due to chronic hyperglycemia leads to the generation of reactive oxygen species and loss of chromosomal integrity. To clarify whether diabetes is a premature aging syndrome, we determined telomere erosion dynamics and occurrence of structural chromosomal aberrations in women of the Ludwigshafen Risk and Cardiovascular Health (LURIC) Study

    Carbon Monoxide Induced Erythroid Differentiation of K562 Cells Mimics the Central Macrophage Milieu in Erythroblastic Islands

    Get PDF
    Growing evidence supports the role of erythroblastic islands (EI) as microenvironmental niches within bone marrow (BM), where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb) is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule - CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage
    corecore