52 research outputs found
Multicritical crossovers near the dilute Bose gas quantum critical point
Many zero temperature transitions, involving the deviation in the value of a
conserved charge from a quantized value, are described by the dilute
Bose gas quantum critical point. On such transitions, we study the consequences
of perturbations which break the symmetry down to in spatial
dimensions. For the case , , we obtain exact, finite temperature,
multicritical crossover functions by a mapping to an integrable lattice model.Comment: 10 pages, REVTEX 3.0, 2 EPS figure
Quantum field theory of metallic spin glasses
We introduce an effective field theory for the vicinity of a zero temperature
quantum transition between a metallic spin glass (``spin density glass'') and a
metallic quantum paramagnet. Following a mean field analysis, we perform a
perturbative renormalization-group study and find that the critical properties
are dominated by static disorder-induced fluctuations, and that dynamic
quantum-mechanical effects are dangerously irrelevant. A Gaussian fixed point
is stable for a finite range of couplings for spatial dimensionality ,
but disorder effects always lead to runaway flows to strong coupling for . Scaling hypotheses for a {\em static\/} strong-coupling critical field
theory are proposed. The non-linear susceptibility has an anomalously weak
singularity at such a critical point. Although motivated by a perturbative
study of metallic spin glasses, the scaling hypotheses are more general, and
could apply to other quantum spin glass to paramagnet transitions.Comment: 16 pages, REVTEX 3.0, 2 postscript figures; version contains
reference to related work in cond-mat/950412
Gas phase vibrational spectroscopy of cold (TiO2)−n (n = 3–8) clusters
We report infrared photodissociation (IRPD) spectra for the D2-tagged titanium oxide cluster anions (TiO2)−n with n = 3–8 in the spectral region from 450 to 1200 cm−1. The IRPD spectra are interpreted with the aid of harmonic spectra from BP86/6-311+G* density functional theory calculations of energetically low-lying isomers. We conclusively assign the IRPD spectra of the n = 3 and n = 6 clusters to global minimum energy structures with Cs and C2 symmetry, respectively. The vibrational spectra of the n = 4 and n = 7 clusters can be attributed to contributions of at most two low-lying structures. While our calculations indicate that the n = 5 and n = 8 clusters have many more low-lying isomers than the other clusters, the dominant contributions to their spectra can be assigned to the lowest energy structures. Through comparison between the calculated and experimental spectra, we can draw conclusions about the size-dependent evolution of the properties of (TiO2)−n clusters, and on their potential utility as model systems for catalysis on a bulk TiO2 surface
The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans
During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells
Fractal chemical kinetics: Reacting random walkers
Computer simulations on binary reactions of random walkers ( A + A → A ) on fractal spaces bear out a recent conjecture: ( ρ −1 − ρ 0 −1 ) ∞ t f , where ρ is the instantaneous walker density and ρ 0 the initial one, and f = d s /2, where d s is the spectral dimension. For the Sierpinski gaskets: d =2, 2 f =1.38 ( d s =1.365); d =3, 2 f =1.56 ( d s =1.547); biased initial random distributions are compared to unbiased ones. For site percolation: d = 2, p =0.60, 2 f = 1.35 ( d s =1.35); d=3, p =0.32, 2 f =1.37 ( d s =1.4); fractal-to-Euclidean crossovers are also observed. For energetically disordered lattices, the effective 2 f (from reacting walkers) and d s (from single walkers) are in good agreement, in both two and three dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45149/1/10955_2005_Article_BF01012924.pd
- …