1,275 research outputs found

    Enhancing single-molecule photostability by optical feedback from quantum-jump detection

    Full text link
    We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level

    Self-organized transition to coherent activity in disordered media

    Get PDF
    Synchronized oscillations are of critical functional importance in many biological systems. We show that such oscillations can arise without centralized coordination in a disordered system of electrically coupled excitable and passive cells. Increasing the coupling strength results in waves that lead to coherent periodic activity, exhibiting cluster, local and global synchronization under different conditions. Our results may explain the self-organized transition in a pregnant uterus from transient, localized activity initially to system-wide coherent excitations just before delivery.Comment: 5 pages, 4 figure

    Molecular basis of proton block of L-type Ca2+ channels.

    Full text link

    Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes

    Get PDF
    AbstractWe show that neurons that underlie rhythmic patterns of electrical output may be identified by optical imaging and frequency-domain analysis. Our contrast agent is a two-component dye system in which changes in membrane potential modulate the relative emission between a pair of fluorophores. We demonstrate our methods with the circuit responsible for fictive swimming in the isolated leech nerve cord. The output of a motor neuron provides a reference signal for the phase-sensitive detection of changes in fluorescence from individual neurons in a ganglion. We identify known and possibly novel neurons that participate in the swim rhythm and determine their phases within a cycle. A variant of this approach is used to identify the postsynaptic followers of intracellularly stimulated neurons

    Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels

    Get PDF
    The cloning of the cDNA for the α1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these α1 subunits and the skeletal muscle α2/δ, β and γ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the α1-, β- and γ-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The α1, β and γ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle α2/δ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the α1, β and γ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    Get PDF
    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions

    Photoswitching Mechanism of Cyanine Dyes

    Get PDF
    Photoswitchable fluorescent probes have been used in recent years to enable super-resolution fluorescence microscopy by single-molecule imaging.1-6 Among these probes are red carbocyanine dyes, which can be reversibly photoconverted between a fluorescent state and a dark state for hundreds of cycles, yielding several thousand detected photons per switching cycle, before permanent photobleaching occurs.7,8 While these properties make them excel-lent probes for super-resolution imaging, the mechanism by which cyanine dyes are photoconverted has yet to be determined. Such an understanding could prove useful for creating new photoswit-chable probes with improved properties. The photoconversion of red cyanine dyes into their dark states occurs upon illumination by red light and is facilitated by a primary thiol in solution,7,9 whereas agents with a secondary thiol do not support photoswitching. These observations suggest that the reactiv

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%

    Get PDF
    Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein
    corecore