1,438 research outputs found

    The Borrowed Servant - Keitz v. National Paving and Contracting Company

    Get PDF

    Acoustic spectral analysis and testing techniques

    Get PDF
    Subjects covered in four reports are described including: (1) mathematical techniques for combining decibel levels of octaves or constant bandwidth: (2) techniques for determining equation for power spectral density function; (3) computer program to analyze acoustical test data; and (4) computer simulation of horn responses utilizing hyperbolic horn theory

    Control and optimization of solute transport in a thin porous tube

    Get PDF
    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth. © 2013 American Institute of Physics

    Plasma phospholipid fatty acids and CHD in older men: Whitehall study of London civil servants

    Get PDF
    Dietary fatty acids (FA) are the major determinants of blood lipids, and measurements of plasma phospholipid FA (PL-FA) composition that reflect the dietary intake of FA may provide insights into the relationships between diet and CHD. We assessed CHD mortality associations with PL-FA (SFA, PUFA and MUFA) levels measured in a nested case-control study of 116 cases of CHD death and 239 controls that were frequency-matched for age and employment grade. The participants had plasma levels of total cholesterol, LDL-cholesterol (LDL-C), HDL-cholesterol, apo B and apo A(1), C-reactive protein (CRP) and fibrinogen recorded. SFA levels were significantly positively correlated with total cholesterol, LDL-C, apo B, CRP protein and fibrinogen. By contrast, phospholipid-PUFA were inversely associated with CRP, but not with any of the lipids. A higher SFA content (top v. bottom quarter) was associated with a 2-fold higher risk of CHD (OR and 95% CI: OR 2.12; 95% CI: 1.13, 3.99), and an equivalent difference in PUFA was associated with a halving in CHD risk (OR 0.49; 95% CI: 0.26, 0.94), but MUFA was unrelated to CHD risk. These associations were substantially attenuated, after additional adjustment for lipids and inflammatory markers. Higher levels of saturated fat and lower levels of polyunsaturated fats were each associated with a higher risk of CHD in elderly men, and these associations were partly explained by their effects on blood lipids and biomarkers of inflammation

    Validation of a portable, waterproof blood pH analyser for elasmobranchs

    Get PDF
    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i- STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i- STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30 degrees C; lemon sharks: 7.0-7.45 pH 25-31 degrees C). The relative error in the pH meter's measurements was similar to +/- 2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal

    The homotopy theory of dg-categories and derived Morita theory

    Full text link
    The main purpose of this work is the study of the homotopy theory of dg-categories up to quasi-equivalences. Our main result provides a natural description of the mapping spaces between two dg-categories CC and DD in terms of the nerve of a certain category of (C,D)(C,D)-bimodules. We also prove that the homotopy category Ho(dg−Cat)Ho(dg-Cat) is cartesian closed (i.e. possesses internal Hom's relative to the tensor product). We use these two results in order to prove a derived version of Morita theory, describing the morphisms between dg-categories of modules over two dg-categories CC and DD as the dg-category of (C,D)(C,D)-bi-modules. Finally, we give three applications of our results. The first one expresses Hochschild cohomology as endomorphisms of the identity functor, as well as higher homotopy groups of the \emph{classifying space of dg-categories} (i.e. the nerve of the category of dg-categories and quasi-equivalences between them). The second application is the existence of a good theory of localization for dg-categories, defined in terms of a natural universal property. Our last application states that the dg-category of (continuous) morphisms between the dg-categories of quasi-coherent (resp. perfect) complexes on two schemes (resp. smooth and proper schemes) is quasi-equivalent to the dg-category of quasi-coherent complexes (resp. perfect) on their product.Comment: 50 pages. Few mistakes corrected, and some references added. Thm. 8.15 is new. Minor corrections. Final version, to appear in Inventione

    Mutations of the BRAF gene in human cancer

    Get PDF
    Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma

    Benefits and tradeoffs of reduced tillage and manure application methods in a Zea mays silage system

    Get PDF
    A critical question is whether there are agricultural management practices that can attain the multiple management goals of increasing yields, preventing nutrient losses, and suppressing greenhouse gas (GHG) emissions. No-till and manure application methods, such as manure injection, can enhance nutrient retention, but both may also enhance emissions of nitrous oxide (N2O), a powerful GHG. We assessed differences in soil N2O and carbon dioxide (CO2) emissions, nitrate and ammonium retention, and crop yield and protein content under combinations of vertical-till, no-till, manure injection, and manure broadcast without incorporation in a corn (Zea mays L.) silage system. During the growing seasons of 2015–2017, GHG emissions and soil mineral nitrogen (N) were measured every other week or more frequently after management events. Crop yield and protein content were measured annually at harvest. No-till reduced CO2 emissions but had no impact on N2O emissions relative to vertical-till. Manure injection increased N2O and CO2 emissions, with the magnitude of this effect being greatest for 1 mo post-application. Manure injection also increased soil ammonium and nitrate but did not increase yield or crop quality relative to broadcast application. Similarly, tillage did not affect crop yield or protein content. Despite the tradeoffs between mineral N retention and elevated GHG emissions, manure injection in no-till systems benefits farmers by reducing soil carbon losses as CO2, retaining mineral N, and maintaining crop yields and quality
    • …
    corecore