867 research outputs found

    Single flux quantum circuits with damping based on dissipative transmission lines

    Full text link
    We propose and demonstrate the functioning of a special Rapid Single Flux Quantum (RSFQ) circuit with frequency-dependent damping. This damping is achieved by shunting individual Josephson junctions by pieces of open-ended RC transmission lines. Our circuit includes a toggle flip-flop cell, Josephson transmission lines transferring single flux quantum pulses to and from this cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired frequency-dispersion in the RC line shunts which ensures sufficiently low noise at low frequencies, such circuits are well-suited for integrating with the flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure

    Spatial Light Modulators for the Manipulation of Individual Atoms

    Full text link
    We propose a novel dipole trapping scheme using spatial light modulators (SLM) for the manipulation of individual atoms. The scheme uses a high numerical aperture microscope to map the intensity distribution of a SLM onto a cloud of cold atoms. The regions of high intensity act as optical dipole force traps. With a SLM fast enough to modify the trapping potential in real time, this technique is well suited for the controlled addressing and manipulation of arbitrarily selected atoms.Comment: 9 pages, 5 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Photosensitizer Drug Delivery via an Optical Fiber

    Get PDF
    : An optical fiber has been developed with a maneuverable miniprobe tip that sparges O2 gas and photodetaches pheophorbide (sensitizer) molecules. Singlet oxygen is produced at the probe tip surface which reacts with an alkene spacer group releasing sensitizer upon fragmentation of a dioxetane intermediate. Optimal sensitizer photorelease occurred when the probe tip was loaded with 60 nmol sensitizer, where crowding of the pheophorbide molecules and self-quenching were kept to a minimum. The fiber optic tip delivered pheophorbide molecules and singlet oxygen to discrete locations. The 60 nmol sensitizer was delivered into petrolatum; however, sensitizer release was less efficient in toluene-d8 (3.6 nmol) where most had remained adsorbed on the probe tip, even after the covalent alkene spacer bond had been broken. The results open the door to a new area of fiber optic-guided sensitizer delivery for the potential photodynamic therapy of hypoxic structures requiring cytotoxic control

    Status and Plans for the National Spherical Torus Experimental Research Facility

    Full text link

    Apoptosis of t(14;18)-positive lymphoma cells by a Bcl-2 interacting small molecule

    Get PDF
    Overexpression of Bcl-2 protein occurs via both t(14;18)-dependent and independent mechanisms and contributes to the survival and chemoresistance of non-Hodgkin lymphomas. HA14–1 is a nonpeptidic organic small molecule, which has been shown to inhibit the interaction of Bcl-2 with Bax, thereby interfering with the antiapoptotic function of Bcl-2. In this study, we sought to determine the in vitro efficacy of HA14–1 as a therapeutic agent for non-Hodgkin lymphomas expressing Bcl-2. Assessment of cell viability demonstrated that HA14–1 induced a dose- (IC50 = 10 μM) and time-dependent growth inhibition of a cell line (SudHL-4) derived from a t(14;18)-positive, Bcl-2-positive, non-Hodgkin lymphoma. HA14–1 effectively induced apoptosis via a caspase 3-mediated pathway but did not affect either the p38 MAPK or p44/42 MAPK pathways. Western blot analyses of Bcl-2 family proteins and other cell cycle-associated proteins were performed to determine the molecular sequelae of HA14–1-induced apoptosis. The results show down-regulation of Mcl-1 but up-regulation of p27kip1, Bad, Bcl-xL, and Bcl-2 proteins, without change in Bax levels during HA14–1-mediated apoptosis. Our findings further elucidate the cellular mechanisms accompanying Bcl-2 inhibition and demonstrate the potential of Bcl-2 inhibitors as therapeutic agents for the treatment of non-Hodgkin lymphomas
    • …
    corecore