216 research outputs found
The truth and beauty of chemical potentials
This essay in honour of Mike Brown addresses aspects of chemical equilibrium and equilibration in rocks, with a focus on the role that chemical potentials play. Chemical equilibrium is achieved by diffusive attening of chemical potential gradients. The idea of equilibration volume is developed, and the way equilibration volumes may evolve along a pressure-temperature path is discussed. The effect of the environment of an equilibration volume is key to understanding the evolution of the equilibration volume with changing conditions. The likely behaviour of equilibration volumes is used to suggest why preservation of equilibrium mineral assemblages and mineral compositions from metamorphism tends to occur. This line of logic then provides the conceptual support to conventional equilibrium thermodynamic approaches to studying rocks, using, for example, thermobarometry and pseudosections.PostprintPeer reviewe
Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations
Segregation of impurities to grain boundaries plays an important role in both
the stability and macroscopic behavior of polycrystalline materials. The
research objective in this work is to better characterize the energetics and
length scales involved with the process of solute and impurity segregation to
grain boundaries. Molecular dynamics simulations are used to calculate the
segregation energies for carbon within multiple grain boundary sites over a
database of 125 symmetric tilt grain boundaries in Fe. The simulation results
show that the majority of atomic sites near the grain boundary have segregation
energies lower than in the bulk. Moreover, depending on the boundary, the
segregation energies approach the bulk value approximately 5-12 \AA\ away from
the center of the grain boundary, providing an energetic length scale for
carbon segregation. A subsequent data reduction and statistical representation
of this dataset provides critical information such as about the mean
segregation energy and the associated energy distributions for carbon atoms as
a function of distance from the grain boundary, which quantitatively informs
higher scale models with energetics and length scales necessary for capturing
the segregation behavior of impurities in Fe. The significance of this research
is the development of a methodology capable of ascertaining segregation
energies over a wide range of grain boundary character (typical of that
observed in polycrystalline materials), which herein has been applied to carbon
segregation in a specific class of grain boundaries in iron
Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition
An extension to a high-order model for the direct isotropic/smectic-A liquid
crystalline phase transition was derived to take into account thermal effects
including anisotropic thermal diffusion and latent heat of phase-ordering.
Multi-scale multi-transport simulations of the non-isothermal model were
compared to isothermal simulation, showing that the presented model extension
corrects the standard Landau-de Gennes prediction from constant growth to
diffusion-limited growth, under shallow quench/undercooling conditions.
Non-isothermal simulations, where meta-stable nematic pre-ordering precedes
smectic-A growth, were also conducted and novel non-monotonic
phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure
Defects in Chiral Columnar Phases: Tilt Grain Boundaries and Iterated Moire Maps
Biomolecules are often very long with a definite chirality. DNA, xanthan and
poly-gamma-benzyl-glutamate (PBLG) can all form columnar crystalline phases.
The chirality, however, competes with the tendency for crystalline order. For
chiral polymers, there are two sorts of chirality: the first describes the
usual cholesteric-like twist of the local director around a pitch axis, while
the second favors the rotation of the local bond-orientational order and leads
to a braiding of the polymers along an average direction. In the former case
chirality can be manifested in a tilt grain boundary phase (TGB) analogous to
the Renn-Lubensky phase of smectic-A liquid crystals. In the latter case we are
led to a new "moire" state with twisted bond order. In the moire state polymers
are simultaneously entangled, crystalline, and aligned, on average, in a common
direction. In the moire state polymers are simultaneously entangled,
crystalline, and aligned, on average, in a common direction. In this case the
polymer trajectories in the plane perpendicular to their average direction are
described by iterated moire maps of remarkable complexity, reminiscent of
dynamical systems.Comment: plain TeX, (33 pages), 17 figures, some uufiled and included, the
remaining available at ftp://ftp.sns.ias.edu/pub/kamien/ or by request to
[email protected]
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
Using a novel electrochemical phase-field model, we question the common
belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases
during battery discharge. For small currents, spinodal decomposition or
nucleation leads to moving phase boundaries. Above a critical current density
(in the Tafel regime), the spinodal disappears, and particles fill
homogeneously, which may explain the superior rate capability and long cycle
life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure
Interatomic potentials for atomistic simulations of the Ti-Al system
Semi-empirical interatomic potentials have been developed for Al, alpha-Ti,
and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large
database of experimental as well as ab-initio data. The ab-initio calculations
were performed by the linear augmented plane wave (LAPW) method within the
density functional theory to obtain the equations of state for a number of
crystal structures of the Ti-Al system. Some of the calculated LAPW energies
were used for fitting the potentials while others for examining their quality.
The potentials correctly predict the equilibrium crystal structures of the
phases and accurately reproduce their basic lattice properties. The potentials
are applied to calculate the energies of point defects, surfaces, planar faults
in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al
system, the proposed potentials provide reasonable description of the lattice
thermal expansion, demonstrating their usefulness in the molecular dynamics or
Monte Carlo studies at high temperatures. The energy along the tetragonal
deformation path (Bain transformation) in gamma-TiAl calculated with the EAM
potential is in a fairly good agreement with LAPW calculations. Equilibrium
point defect concentrations in gamma-TiAl are studied using the EAM potential.
It is found that antisite defects strongly dominate over vacancies at all
compositions around stoichiometry, indicating that gamm-TiAl is an antisite
disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
Size-Dependent Materials Properties Toward a Universal Equation
Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done
Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics
Classical theories of chemical kinetics assume independent reactions in
dilute solutions, whose rates are determined by mean concentrations. In
condensed matter, strong interactions alter chemical activities and create
inhomogeneities that can dramatically affect the reaction rate. The extreme
case is that of a reaction coupled to a phase transformation, whose kinetics
must depend on the order parameter -- and its gradients, at phase boundaries.
This Account presents a general theory of chemical kinetics based on
nonequilibrium thermodynamics. The reaction rate is a nonlinear function of the
thermodynamic driving force (free energy of reaction) expressed in terms of
variational chemical potentials. The Cahn-Hilliard and Allen-Cahn equations are
unified and extended via a master equation for non-equilibrium chemical
thermodynamics. For electrochemistry, both Marcus and Butler-Volmer kinetics
are generalized for concentrated solutions and ionic solids. The theory is
applied to intercalation dynamics in the phase separating Li-ion battery
material LiFePO.Comment: research account, 17 two-column pages, 12 figs, 78 refs - some typos
corrected Accounts of Chemical Research (2013
Non-Isothermal Model for Nematic Spherulite Growth
A computational study of the growth of two-dimensional nematic spherulites in
an isotropic phase was performed using a Landau-de Gennes type quadrupolar
ensor order parameter model for the first-order isotropic/nematic transition of
5CB (pentyl-cyanobiphenyl). An energy balance, taking anisotropy into account,
was derived and incorporated into the time-dependent model. Growth laws were
determined for two different spherulite morphologies of the form tn, with and
without the inclusion of thermal effects. Results show that incorporation of
the thermal energy balance correctly predicts the transition of the growth law
exponent from the volume driven regime (n=1) to the thermally limited regime
(approaching n=0.5), agreeing well with experimental observations. An
interfacial nemato-dynamic model is used to gain insight into the interactions
that result in the progression of different spherulite growth regimes
- …