528 research outputs found

    The Global Competitive Challenge For EMBA Students

    Get PDF
    This article describes the birth and development of an innovative international business course called the Global Competitive Challenge. The paper highlights the process of developing the course and how the course is being updated to meet the requirements of current participants in an EMBA program

    Implications of the Tribolium genome project for pest biology

    Get PDF
    Implications of the Tribolium genome project for pest biology The universal availability of the complete Tribolium castaneum genome sequence assembly and annotation (Richards et al., 2008) and concomitant development of the versatile Tribolium genome browser, BeetleBase (Kim et al., 2010, http://beetlebase.org/) open new realms of possibility for stored product pest control by greatly simplifying the task of connecting biology and behavior with underlying molecular mechanisms. This genome has enabled sequence similarity searches that have resulted in a flood of new discovery involving thousands of genes with important functions in digestion, osmoregulation, metamorphosis, olfaction, xenobiotic metabolism, vision, and embryonic and larval growth and development. The value of the T. castaneum genome sequence is greatly enhanced by the availability of a sophisticated functional genomic toolkit for laboratory studies of this insect. These tools include high-resolution physical and genetic maps, genomic and cDNA libraries, balancer chromosomes, and effective and reliable techniques for specific knockout of any target gene via RNA interference (RNAi). In this paper we briefly discuss just two areas of Tribolium biology research that are being revitalized by the availability of the genome sequence, namely olfaction and exoskeleton, or “smell and skin”

    Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum

    Get PDF
    The insect exoskeleton is composed of cuticle primarily formed from structural cuticular proteins (CPs) and the polysaccharide chitin. Two CPs, TcCPR27 and TcCPR18, are major proteins present in the elytron (highly sclerotized and pigmented modified forewing) as well as the pronotum (dorsal sclerite of the prothorax) and ventral abdominal cuticle of the red flour beetle, Tribolium castaneum. Both CPs belong to the CPR family, which includes proteins that have an amino acid sequence motif known as the Rebers & Riddiford (R&R) consensus sequence. Injection of double-stranded RNA (dsRNA) for TcCPR27 and TcCPR18 resulted in insects with shorter, wrinkled, warped and less rigid elytra than those from control insects. To gain a more comprehensive understanding of the roles of CPs in cuticle assembly, we analyzed for the precise localization of TcCPR27 and the ultrastructural architecture of cuticle in TcCPR27- and TcCPR18-deficient elytra. Transmission electron microscopic analysis combined with immunodetection using goldlabeled secondary antibody revealed that TcCPR27 is present in dorsal elytral procuticle both in the horizontal laminae and in vertical pore canals. dsRNA-mediated RNA interference (RNAi) of TcCPR27 resulted in abnormal electron-lucent laminae and pore canals in elytra except for the boundary between these two structures in which electron-dense molecule(s) apparently accumulated. Insects subjected to RNAi for TcCPR18 also had disorganized laminae and pore canals in the procuticle of elytra. Similar ultrastructural defects were also observed in other body wall regions with rigid cuticle such as the thorax and legs of adult T. castaneum. TcCPR27 and TcCPR18 are required for proper formation of the horizontal chitinous laminae and vertical pore canals that are critical for formation and stabilization of rigid adult cuticle

    Genetic structure of Tribolium castaneum populations in mills

    Get PDF
    We investigated the genetic diversity and differentiation among nine populations of Tribolium castaneum using eight polymorphic loci, including microsatellites and other insertion-deletion polymorphisms (=”indels”). Samples were collected in food processing/storage facilities located in Kansas, Nebraska, California, Louisiana, Florida and Puerto Rico. Standard population genetic analysis was applied, and an assignment test was used to assign individuals to their genetic population. All loci were polymorphic across populations, with the number of alleles per locus-population combination varying from three to fourteen. Among 72 locus-by-population combinations, 31 deviated significantly from Hardy-Weinberg equilibrium, which was associated with a deficiency in heterozygosity. Tribolium castaneum populations show some level of genetic structuring. Genetic differentiation between populations, using FST estimates, was significant, with FST varying from 0.018 to 0.149. AMOVA indicated that 8.32% of the variation in allele frequency resulted from comparisons among populations. Genetic distance was not significantly correlated with geographic distance. Correct assignment to the genetic population was possible in only 56% of all individuals. Together, these results revealed that geographically distinct populations of T. castaneum had low to moderate levels of genetic differentiation that was not correlated with geographic distance, and the genotypic profile of the individuals did not provide enough information for fingerprinting them with their source population. Keywords: Tribolium castaneum, Population genetics, Genetic structure, FST, Genetic fingerprintin

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    Predicting the response of a submillimeter bolometer to cosmic rays

    Get PDF
    Bolometers designed to detect. submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model

    Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils

    Full text link
    Graphene grown by chemical vapor deposition and supported on SiO2 and sapphire substrates was studied following controlled introduction of defects induced by 35 keV carbon ion irradiation. Changes in Raman spectra following fluences ranging from 10^12 cm^-2 to 10^15 cm^-2 indicate that the structure of graphene evolves from a highly ordered layer, to a patchwork of disordered domains, to an essentially amorphous film. These structural changes result in a dramatic decrease in the Hall mobility by orders of magnitude while, remarkably, the Hall concentration remains almost unchanged, suggesting that the Fermi level is pinned at a hole concentration near 1x10^13 cm^-2. A model for scattering by resonant scatterers is in good agreement with mobility measurements up to an ion fluence of 1x10^14 cm^-2

    Mutual passivation of group IV donors and nitrogen in diluted GaNₓAs₁ˍₓ alloys

    No full text
    We demonstrate the mutual passivation phenomenon of Ge donors and isovalent N in highly mismatched alloy GaNₓAs₁ˍₓdoped with Ge. Layers of this alloy were formed by the sequential implantation of Ge and N ions followed by pulsed laser melting and rapid thermal annealing. The mutual passivation effect results in the electrical deactivation of GeGa donors (Ge on Ga sites) and suppression of the NAs (N on As sites) induced band gap narrowing through the formation of GeGa–NAs nearest neighbor pairs. These results in combination with the analogous effect observed in Si-doped GaNₓAs₁ˍₓ provide clear evidence of the general nature of the mutual passivation phenomenon in highly mismatched semiconductor alloys.This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. One of the authors ~M.A.S.! acknowledges support by an NSF graduate research fellowship

    Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs

    No full text
    Some of the authors thank for the support of the Center for Nanoscale Systems (CNS) at Harvard University is acknowledged. Harvard-CNS is a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award No. ECS-0335765. K. M. Yu and J. W. Beeman were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.Some of the authors thank for the support of the Center for Nanoscale Systems (CNS) at Harvard University is acknowledged. Harvard-CNS is a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award No. ECS-0335765. K. M. Yu and J. W. Beeman were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
    corecore