131 research outputs found

    Upgrade of the ATLAS 10 GHz ECRIS

    Get PDF
    A major renovation of the ATLAS 10 GHz ECRIS, which began operations in 1987, is in the planning and acquisition phase. The old two-stage source will be converted to a single stage design including a high gradient magnetic field, electron donor disk, large radial ports, and flexible modular design. Eight solenoid coils taken from the existing ECR will produce the axial mirror. The individual coils will be encased in an iron yoke that optimizes the magnetic field. Computer modeling of the field profile yields a minimum field along the axis of 3.0 kG with mirror ratios of 4.4 and 2.9. An open hexapole configuration consisting of Nd-Fe-B bars enclosed in an austenitic stainless steel housing will be placed in an aluminium plasma chamber that will be water cooled along the poles of the hexapole. The hexapole field at the chamber wall, 4 cm in radius, is expected to be 9.3 kG along the magnet poles and 5.7 kG along the center of the pole gaps, which are 2.4 cm wide. A 3D model produced from individual 2D field profiles was used to check the end effects of the hexapole. Based on the models this new field configuration is capable of supporting a second ECR resonance zone at 14 GHz, which may be implemented at a later date

    Direct Observation of Hyperfine Quenching of the (2)3p0 Level in Helium-Like Nickel

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/We report a clear demonstration of the effect of hyperfine quenching of a forbidden transition by direct comparison of the lifetimes of the 2 3P0 level in the heliumlike isotopes Ni-61(26+) and Ni-58(26+). We find the quenched lifetime of the 2 3P0 level in Ni-61(26+) to be 470(50) ps. From this we deduce the 2 3P0-2 3P1 energy splitting to be 2.33(15) eV. We also report a measurement of the lifetime of the 2 3P2 level in Ni-58(26+), which is found to be 70(3) ps

    High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.Comment: 11 pages, 10 figure

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    High-sensitivity measurement of ^3He−^4He isotopic ratios for ultracold neutron experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of ^3He to ^4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10^(−14) level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of ^3He/^4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude
    corecore