38 research outputs found

    Adriamycin loading and release characteristics of albumin-heparin conjugate microspheres

    Get PDF
    Biodegradable ion-exchange microspheres, prepared from a prefabricated conjugate of albumin and heparin were investigated as carriers for adriamycin. The ion-exchange microspheres could be loaded with adriamycin giving payloads up to 33% w/w, depending on the heparin content of the conjugate. In vitro adriamycin release depended on the ionic strength of the release medium. In ion containing media, for instance saline, 90% of the drug was released within 45 min, whereas in non-ionic media, such as distilled water, only 30% was released. Drug release profiles could be modelled by combining ion-exchange kinetics and diffusion controlled drug release models

    Preparation and characterization of albumin-heparin microspheres

    Get PDF
    Albumin-heparin microspheres were prepared by a two-step process which involved the preparation of a soluble albumin-heparin conjugate, followed by formation of microspheres from this conjugate or by a double cross-linking technique involving both coupling of soluble albumin and heparin and microsphere stabilization in one step. The first technique was superior since it allowed better control over the composition and the homogeneity of the microspheres. Microspheres could be prepared with a diameter of 5¿35¿m. The size could be controlled by adjusting the emulsification conditions. The degree of swelling of the microspheres was sensitive to external stimuli, and increased with increasing pH and decreasing ionic strength of the medium

    Protective effect of CV247 against cisplatin nephrotoxicity in rats

    Get PDF
    CV247 (CV), an aqueous mixture of copper (Cu) and manganese (Mn) gluconates, vitamin C and sodium salicylate increased the antitumour effects of cisplatin (CDPP; cis-diamminedichloroplatinum) in vitro. We hypothesized that the antioxidant and cyclooxygenase-2 (COX-2; prostaglandin-endoperoxide synthase 2) inhibitory components of CV can protect the kidneys from CDPP nephrotoxicity in rats. CDPP (6.5 mg/kg, intraperitoneally) slightly elevated serum creatinine (Crea) and blood urea nitrogen (BUN) 12 days after treatment. Kidney histology demonstrated extensive tubular epithelial damage and COX-2 immunoreactivity increased 14 days after treatment. A large amount of platinum (Pt) accumulated in the kidney of CDPP-treated rats. Furthermore, CDPP decreased renal iron (Fe), molybdenum (Mo), zinc (Zn), Cu and Mn concentrations and increased plasma Fe and Cu concentrations. CDPP elevated plasma free radical concentration. Treatment with CV alone for 14 days (twice 3 ml/kg/day orally) did not influence these parameters. Chronic CV administration after CDPP reduced renal histological damage and slightly decreased COX-2 immunoreactivity, while failed to prevent the increase in Crea and BUN levels. Blood free radical concentration was reduced, that is, CV improved redox homeostasis. CV restored plasma Fe and renal Fe, Mo and Zn, while decreased Pt and elevated Cu and Mn concentrations in the kidney. Besides the known synergistic antitumour effects with CDPP, CV partially protected the kidneys from CDPP nephrotoxicity probably through its antioxidant effect

    Micro-Flow Imaging as a quantitative tool to assess size and agglomeration of PLGA microparticles

    Get PDF
    The purpose of this study was to explore the potential of flow imaging microscopy to measure particle size and agglomeration of poly(lactic-co-glycolic acid) (PLGA) microparticles. The particle size distribution of pharmaceutical PLGA microparticle products is routinely determined with laser diffraction. In our study, we performed a unique side-by-side comparison between MFI 5100 (flow imaging microscopy) and Mastersizer 2000 (laser diffraction) for the particle size analysis of two commercial PLGA microparticle products, i.e., Risperdal Consta and Sandostatin LAR. Both techniques gave similar results regarding the number and volume percentage of the main particle population (28–220 μm for Risperdal Consta; 16–124 μm for Sandostatin LAR). MFI additionally detected a ‘fines’ population (Drug Delivery Technolog

    Ototopical drops containing a novel antibacterial synthetic peptide: safety and efficacy in adults with chronic suppurative otitis media

    Get PDF
    ObjectiveChronic suppurative otitis media (CSOM) is a chronic infectious disease with worldwide prevalence that causes hearing loss and decreased quality of life. As current (antibiotic) treatments often unsuccessful and antibiotic resistance is emerging, alternative agents and/or strategies are urgently needed. We considered the synthetic antimicrobial and anti-biofilm peptide P60.4Ac to be an interesting candidate because it also displays anti-inflammatory activities including lipopolysaccharide-neutralizing activity. The aim of the present study was to investigate the safety and efficacy of ototopical drops containing P60.4Ac in adults with CSOM without cholesteatoma.MethodsWe conducted a range-finding study in 16 subjects followed by a randomized, double blinded, placebo-controlled, multicentre phase IIa study in 34 subjects. P60.4Ac-containing ototopical drops or placebo drops were applied twice a day for 2 weeks and adverse events (AEs) and medication use were recorded. Laboratory tests, swabs from the middle ear and throat for bacterial cultures, and audiometry were performed at intervals up to 10 weeks after therapy. Response to treatment was assessed by blinded symptom scoring on otoscopy.ResultsApplication of P60.4Ac-containing ototopical drops (0.25-2.0 mg of peptide/ml) in the ear canal of patients suffering from CSOM was found to be safe and well-tolerated. The optimal dose (0.5 mg of peptide/ml) was selected for the subsequent phase IIa study. Safety evaluation revealed only a few AEs that were unlikely related to study treatment and all, except one, were of mild to moderate intensity. In addition to this excellent safety profile, P60.4Ac ototopical drops resulted in a treatment success in 47% of cases versus 6% in the placebo group.ConclusionThe efficacy/safety balance assessed in the present study provides a compelling justification for continued clinical development of P60.4Ac in therapy-resistant CSOM.Development and application of statistical models for medical scientific researc

    Boron microlocalization in oral mucosal tissue: implications for boron neutron capture therapy

    Get PDF
    Clinical studies of the treatment of glioma and cutaneous melanoma using boron neutron capture therapy (BNCT) are currently taking place in the USA, Europe and Japan. New BNCT clinical facilities are under construction in Finland, Sweden, England and California. The observation of transient acute effects in the oral mucosa of a number of glioma patients involved in the American clinical trials, suggests that radiation damage of the oral mucosa could be a potential complication in future BNCT clinical protocols, involving higher doses and larger irradiation field sizes. The present investigation is the first to use a high resolution surface analytical technique to relate the microdistribution of boron-10 (10B) in the oral mucosa to the biological effectiveness of the 10B(n,α)7Li neutron capture reaction in this tissue. The two boron delivery agents used clinically in Europe/Japan and the USA, borocaptate sodium (BSH) and p-boronophenylalanine (BPA), respectively, were evaluated using a rat ventral tongue model. 10B concentrations in various regions of the tongue mucosa were estimated using ion microscopy. In the epithelium, levels of 10B were appreciably lower after the administration of BSH than was the case after BPA. The epithelium:blood 10B partition ratios were 0.2:1 and 1:1 for BSH and BPA respectively. The 10B content of the lamina propria was higher than that measured in the epithelium for both BSH and BPA. The difference was most marked for BSH, where 10B levels were a factor of six higher in the lamina propria than in the epithelium. The concentration of 10B was also measured in blood vessel walls where relatively low levels of accumulation of BSH, as compared with BPA, was demonstrated in blood vessel endothelial cells and muscle. Vessel wall:blood 10B partition ratios were 0.3:1 and 0.9:1 for BSH and BPA respectively. Evaluation of tongue mucosal response (ulceration) to BNC irradiation indicated a considerably reduced radiation sensitivity using BSH as the boron delivery agent relative to BPA. The compound biological effectiveness (CBE) factor for BSH was estimated at 0.29 ± 0.02. This compares with a previously published CBE factor for BPA of 4.87 ± 0.16. It was concluded that variations in the microdistribution profile of 10B, using the two boron delivery agents, had a significant effect on the response of oral mucosa to BNC irradiation. From a clinical perspective, based on the findings of the present study, it is probable that potential radiation-induced oral mucositis will be restricted to BNCT protocols involving BPA. However, a thorough high resolution analysis of 10B microdistribution in human oral mucosal tissue, using a technique such as ion microscopy, is a prerequisite for the use of experimentally derived CBE factors in clinical BNCT. © 2000 Cancer Research Campaig
    corecore