527 research outputs found

    Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking

    Get PDF
    The statistical properties of speckle relevant to short to medium range (tactical) active tracking involving polychromatic (partially temporally coherent) illumination are investigated. A numerical model is developed to allow rapid simulation of speckled images including the speckle contrast reduction effects of illuminator bandwidth, surface slope and roughness, and the polarization properties of both the source and the reflection. Regarding surface slope, Huntley\u27s theory for speckle contrast, which employs geometrical approximations to decrease computation time, is modified to increase accuracy by incorporation of a geometrical correction factor and better treatment of roughness and polarization. The resulting model shows excellent agreement with more exact theory over a wide range. An experiment is conducted to validate both the numerical model developed here and existing theory. A short coherence length diode laser source is reflected off of a silver-coated diffuse surface. Speckle data is gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55 and 1. Taking Hu\u27s theory as truth, the measurements have -1.1% mean difference with 2.9% standard deviation, while the modified Huntley equation has 1.4% mean difference with 1.0% standard deviation. Thus, the theory is validated over the range of this experiment

    GABAergic Synapse Dysfunction and Repair in Temporal Lobe Epilepsy

    Get PDF
    Severe medial temporal lobe epilepsy (mTLE) is often associated with pharmacoresistant seizures, impaired memory and mood disorders. In the hippocampus, GABAergic inhibitory interneuron dysfunction and other neural circuit abnormalities contribute to hyperexcitability, but the mechanisms are still not well understood. Experimental approaches aimed at correcting deficits in hippocampal circuits in mTLE include attempts to replace GABAergic interneurons through neural stem cell transplantation. Evidence from studies in rodent mTLE models indicates that transplanted GABAergic progenitor cells integrate into the hippocampus, form inhibitory synapses, reduce seizures and improve cognitive deficits. Here, we review current work in this field and describe potential molecular mechanisms underlying successful transplantation

    Modeled and Measured Image-plane Polychromatic Speckle Contrast

    Get PDF
    The statistical properties of speckle relevant to short- to medium-range (tactical) active tracking involving polychromatic illumination are investigated. A numerical model is developed to allow rapid simulation of speckled images including the speckle contrast reduction effects of illuminator bandwidth, surface slope, and roughness, and the polarization properties of both the source and the reflection. Regarding surface slope (relative orientation of the surface normal and illumination/observation directions), Huntley’s theory for speckle contrast, which employs geometrical approximations to decrease computation time, is modified to increase accuracy by incorporation of a geometrical correction factor and better treatment of roughness and polarization. The resulting model shows excellent agreement with more exact theory over a wide range. An experiment is conducted to validate both the numerical model developed here and existing theory. A diode laser source with coherence length of 259±7  μm is reflected off of a silver-coated diffuse surface. Speckle data are gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55 and 1. Taking the measured data as truth, both equations show error mean and standard deviation of less than 3%. Thus, the theory is validated over the range of this experiment

    Enhanced, Fast-running Scaling Law Model of Thermal Blooming and Turbulence Effects on High Energy Laser Propagation

    Get PDF
    A new scaling law model is presented to rapidly simulate thermal blooming and turbulence effects on high energy laser propagation, producing results approaching the quality normally only available using wave-optics code, but at much faster speed. The model convolves irradiance patterns originating from two distinct scaling law models, one with a proficiency in thermal blooming effects and the other in turbulence. To underscore the power of the new model, results are verified for typical, realistic scenarios by direct comparison with wave optics simulation

    Motorized Beam Alignment of a Commercial X-ray Diffractometer

    Get PDF
    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP) summer internship program and the budget goal was $1200. In this report, we will describe our motorization design and discuss the results of its implementation

    Communication and optimal hierarchical networks

    Full text link
    We study a general and simple model for communication processes. In the model, agents in a network (in particular, an organization) interchange information packets following simple rules that take into account the limited capability of the agents to deal with packets and the cost associated to the existence of open communication channels. Due to the limitation in the capability, the network collapses under certain conditions. We focus on when the collapse occurs for hierarchical networks and also on the influence of the flatness or steepness of the structure. We find that the need for hierarchy is related to the existence of costly connections.Comment: 7 pages, 2 figures. NATO ARW on Econophysic

    Array of micro-machined mass energy micro-filters for charged particles

    Get PDF
    An energy filter for charged particles includes a stack of micro-machined wafers including plural apertures passing through the stack of wafers, focusing electrodes bounding charged particle paths through the apertures, an entrance orifice to each of the plural apertures and an exit orifice from each of the plural apertures and apparatus for biasing the focusing electrodes with an electrostatic potential corresponding to an energy pass band of the filter

    Methods and apparatus for improving sensor performance

    Get PDF
    Methods and apparatus for improving performance of a sensor having a sensor proof mass elastically suspended at an initial equilibrium position by a suspension force, provide a tunable force opposing that suspension force and preset the proof mass with that tunable force to a second equilibrium position less stable than the initial equilibrium position. The sensor is then operated from that preset second equilibrium position of the proof mass short of instability. The spring constant of the elastic suspension may be continually monitored, and such continually monitored spring constant may be continually adjusted to maintain the sensor at a substantially constant sensitivity during its operation
    corecore