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Abstract

This work investigates the statistical properties of speckle relevant to short to
medium range (tactical) active tracking engagements involving partially temporally
coherent (polychromatic) illumination. A numerical model is developed to allow rapid
simulation of speckled images including the speckle contrast reduction effects of
illuminator bandwidth, surface slope and roughness, and the polarization properties of the
source and surface. Regarding surface slope, Huntley’s theory for speckle contrast, which
employs geometrical approximations to decrease computation time, is modified to
increase fidelity by incorporation of previously developed correction factors. A
laboratory experiment is conducted to validate both the numerical model developed here
and existing theory developed by Hu. A 671 nm diode laser source with coherence length
of 259 +/- 7 um is reflected off of a silver-coated diffuse surface. The reflections from
diffraction-limited pixel viewing areas of 1.77 +/- 0.03 mm diameter are recorded via a
CMOS detector array. The geometry is chosen such that speckles are well resolved with
4.8 +/- 0.1 pixels across each speckle width. The target surface is rotated about its normal
between image captures to provide about 1,800 independent speckle samples for each
slope angle, and data is gathered for 16 surface slope angles corresponding to speckle
contrast between about 0.55 and 1. Data for polarization and surface roughness is also
gathered and used to compare the theoretical and observed speckle contrasts. Taking

Hu’s theory as truth, the measurements show only -1.1% mean difference with 2.9%



standard deviation, while the modified Huntley equation has 1.4% mean difference with
1.0% standard deviation. Thus, good agreement between the measurements, Hu’s theory,
and the modified Huntley equation is found, and the theory is validated over the range of
this experiment. Further, measured speckle size matches theory fairly well with some
disagreements. Finally, measurements show that existing approximations for speckle

irradiance PDF differ significantly from the physics, and better PDF models are needed.
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MODELED AND MEASURED PARTIALLY-COHERENT ILLUMINATION

SPECKLE EFFECTS FROM SLOPED SURFACES FOR TACTICAL TRACKING

l. Introduction

This research investigates the statistics of speckle phenomena in the image plane
for short to medium range (tactical) active tracking scenarios with a focus on high energy
laser (HEL) tracking applications (See the List of Symbols, Abbreviations, and
Acronyms after the Bibliography for a complete list of acronyms.). In particular, it
addresses a partially temporally coherent (polychromatic) source illuminating an
optically rough surface for coincident observation and incidence angles which are not
necessarily normal to the surface. The speckle contrast is defined as a function of surface
slope, illuminator coherence length, surface roughness, and polarization properties of the
illuminator and surface. It is found that for many targets, surface slope dominates the
speckle contrast. A method for numerically modeling speckle contrast is also developed.
Additionally, the speckle statistics are compared to experimental results to validate the
numerical models and their utility for target interrogation, aimpoint identification, and

accurate modeling of active illumination tracking.



1.1 Background

With the advent of compact, high power solid-state lasers and new mission goals,
such as counter-UAV (unmanned aerial vehicle) and counter-RAM (rockets, artillery, and
mortars), the directed energy (DE) community has experienced a marked shift in focus to
shorter-range missions than were typically considered in the past [Motes and Berdine,
2009; Butler, 2011; LaGrone, 2014; Boeing Defense, Space & Security, 2014]. Because
high energy laser (HEL) weapons are capable of exceptional precision, their tracking
requirements are typically very demanding even for shorter range tactical scenarios [Van
Zandt et al., 2012]. To reduce tracking error, active illumination is often considered for a
variety of reasons including increasing signal-to-noise ratio (SNR), increasing resolution
over longer wavelength mid-wave infrared (MWIR) and long-wave infrared (LWIR)
passive imaging, or eliminating dependence upon target emission and solar reflection.

Figure 1.1 shows one example of a situation in which active tracking outperforms
passive, increasing the HEL system’s keep-out-zone. Here, keep-out-zone is defined as
the area about the HEL system in which targets can be engaged and destroyed quickly. In
Figure 1.1, the green and yellow shaded regions indicate short kill times of a few seconds
or less. The left and right plots differ only in illumination type, with passive and active
illumination used respectively. Active illumination extends the yellow region of the keep-
out-zone significantly, making the HEL more effective. While this figure represents only
one scenario, it shows the type of HEL system performance increase which can result
from active illumination.

However, active tracking has disadvantages, one of the primary disadvantages

being the introduction of speckle phenomena, which is the focus of this work. Figure 1.2



shows an example of a speckled image of a distant target. The target is a 4 m wingspan
UAYV at 9 km altitude and 16 km slant range. The speckles are the bright and dark spots
in the image caused by the combination of the partial coherence of the laser illuminator
and the microscopic rough surface features of the target. Besides speckle, other active
illumination disadvantages include increased system size, weight, and power
requirements, increased complexity, and potentially lower SNR during the day, when
solar irradiance can be hard to compete with. Because of these disadvantages, active
illumination is not always the right answer, creating a need to understand the

disadvantages of active illumination, including speckle.
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Figure 1.1. HEL keep-out-zone comparison of passive and active illumination. The left and right plots
represent identical systems except that passive illumination and active illumination are used respectively. A
target flying within the green and yellow regions can be disabled quickly. Performance is visibly increased

with active illumination, mostly due to the increase in the yellow region. These plots were created using

PITBUL for active tracking modeling and HELEEQOS for HEL modeling. Conditions: 0.5 m wingspan

UAV target at 100 m altitude flying directly toward the HEL, HEL at ground level, 50 w pulsed active

illumination at 1.1 um wavelength, 1.5 cm coherence length, and a passive tracking band of 3 um to 5 pum.



Figure 1.2. A speckled image of an actively illuminated UAV. The speckles are the bright and dark spots
across the image. Partially developed speckle is shown here due to the short coherence length of the
illuminator and sloped surfaces of the target. Conditions: 1.1 um wavelength pulsed illuminator with 1.5

cm coherence length and 500 w average power, 4 m wingspan UAV at 9 km altitude and 16 km slant range.

While the implications of speckle phenomena have been well-defined for long
range active tracking [Riker, 2011; Baribeau and Rioux, 1991], little published research
exists regarding the statistics and impact of speckle for shorter range scenarios. Because
of the exceptional tracking requirements of HEL systems, speckle effects need to be well
understood in order to assess the utility of active illumination during the HEL system
design process. Speckle effects are a function of many parameters including surface slope
and roughness, illuminator coherence length, polarization properties of the illuminator
and surface, atmospheric turbulence, and target motion. Furthermore, because speckle is
a function of surface slope, the magnitude of the phenomena will vary over the spatial
dimensions of a three-dimensional target, potentially introducing both detrimental and

beneficial properties to the target imagery.



1.2 Applications

A proper understanding of speckle phenomena for tactical tracking scenarios has
a number of applications including the numerical analysis of both active tracking
performance and speckle-based measurement of surface slopes across the target. First,
speckle theory for short range scenarios will find application in the analysis and
numerical simulation of active tracking by providing a rigorous basis for estimates of
tracking error. Potential uses in this area include comparison studies between active and
passive illumination for system design and optimal selection of tracking loop bandwidth.
Regarding tracking loop bandwidth, previous work has indicated that the optimal tracking
bandwidth is the maximum possible bandwidth, which best compensates for target
motion and turbulence effects [Riker, 2011]. However, for a dynamic target in the
presence of speckle and turbulence, the speckle pattern changes over time as a function of
both target and atmospheric motion. Because a speckled image averaged over many
independent speckle realizations produces an unspeckled image, it is desirable to
minimize the tracking bandwidth in order to average out the speckle. Thus, when speckle
is included, the optimal tracking bandwidth can be lower than the maximum possible
bandwidth.

The second class of applications for tactical speckle theory involves the
measurement of target surface slope. Because speckle contrast is a strong function of
surface slope as referenced to the illumination/imaging line of sight (LOS), it is possible
to extract surface slope information from speckle imagery [Van Zandt, 2014]. Such
information could find use for target identification. Additionally, certain target regions or

aimpoints can also be identified from surface slope [Van Zandt, 2014]. One such



aimpoint is the wing joint of most aircraft, which is found at the junction of the wing and
the fuselage, two areas which often have different surface slopes relative to the LOS. This

concept will be discussed further in Section 5.2.

1.3 Thesis Outline

Chapter 2 examines the theory of speckle phenomena for tactical scenarios.
Speckle statistics including irradiance distribution, size, and contrast are examined for an
imaging geometry including the impacts of aperture size, illuminator characteristics, and
surface properties. The experimental methodology and layout is covered in Chapter 3.
Chapter 4 presents the experimental results with comparison to the numerical simulation
results for model validation over the experimental range. A summary and concluding

remarks are given in Chapter 5, along with proposals for future research.



Il. Literature Review

Investigation of speckle phenomena began in earnest with the development of the
first commercial lasers in the 1960s. Researchers working on the early lasers noticed that
laser light which was reflected off of most common materials appeared to the human eye
to be speckled or broken up into small bright and dark spots [Goodman, 2007:1]. They
quickly attributed this speckle pattern to the random phasor sum which results from the
detection of coherent (laser) light reflected off of an optically rough surface. It is
important to note that most surfaces, even those which seem fairly smooth to the touch,
are rough compared to optical wavelengths. The random surface roughness imparts a
random phase pattern on the light which reflects off of that surface. When that light is
collected and interfered during measurement, a random phasor sum results which causes
a spatially random component in the detected irradiance pattern known as speckle.

Over the last fifty years, a wide breadth of research has been conducted into this
phenomenon with application in fields from microscopy to laser range finding
[Goodman, 2007]. In this section, the portion of that research relevant to the modeling of
speckle for modern tactical active tracking is reviewed. First, statistical theory of fully
developed speckle is derived, theory which assumes full coherence and complete
polarization of both source and reflection. Next, statistical theory regarding reduction in
speckle contrast is presented, including reduction due to polarization diversity,
polychromatic light, surface roughness, and surface slope. Third, as reduction due to

surface slope tends to dominate in most cases, a more complete physical optics theory for



that reduction factor is presented to provide a point of comparison with the simpler but

broader model which is more commonly used.

2.1 Statistical Properties of Fully Developed Speckle

Rigorous solutions to speckle problems often require extensive inquiry into the
propagation of electromagnetic waves and many have no known analytical form
[Goodman, 2000:348; Hyde 2013; Huntley, 1999]. However, it is often sufficient to take
a much simpler statistical approach involving random phasor sums. Such an approach for
speckle with a fully coherent illuminator and fully polarized light is presented here both
as a basis for more complex theory to follow and as an example of the statistical methods

employed in speckle analysis. The random phasor sum is defined as
A = Aexp(if) = Za exp(i6, ) (1)
\/_

where N is the number of phasors, and the n phasor has length a, /\/W and phase 6,

[Goodman, 2007:7]. Each phasor in the sum represents the complex electric field due to

reflection from a single rough surface feature within the viewing area of the detector
element, or instantaneous field of view (IFOV). The factor of 1/\/W is added so that the

sum converges as N is allowed to go to infinity.

Before progressing, four key assumptions are made. First, it is assumed that all
phasor amplitudes and phases are statistically independent of all others. In other words,
each rough surface feature’s reflection is assumed to be independent of all other
reflections. Second, all phasors share a common amplitude distribution with a known

mean and variance, implying that the illumination is uniform over the pixel viewing area.



Conveniently, the mean can easily be found from radiometry under the assumption of
incoherence. Also, because the central limit theorem will be used, the specific statistical
distribution of amplitude is irrelevant. Third, assume that each detector element views a
large number of independent rough surface features, which will allow the use of the
central limit theorem and other approximations. Finally, assume the condition known as
“fully developed speckle” by assuming that the wrapped phases are uniformly distributed
over (0, 2 ) [Goodman, 2007:28]. This last assumption is justified as long as the surface
height standard deviation is at least three times greater than the wavelength [Goodman,
2007:73], a condition which is almost always satisfied for tactical active tracking. As an
example, a study by Boeing showed that the average surface roughness of a coated 737
aircraft body is about 3 pum in spite of considerable effort to reduce it in order to reduce
aerodynamic drag [Boeing, 1983], while illuminator wavelengths are typically around 1
pum [St. Pierre, 1997; Post, 2004].

Next, break the random phasor sum down into real and imaginary components, r

and i, as
r:Re{A}zﬁian cos(8,) @)
i—Im{A) =%ian sin(0,) @)

By the central limit theorem, each component is approximately normally distributed.
Further, by using the assumptions defined previously, it is not hard to show that the

means of both r and i are zero, the correlation between the two is also zero, and the

variance o of each is given by



, <a’>
O =

5 (4)
Thus, the joint probability density function (PDF) is
e
At this point, a transformation of variables yields the joint probability density
function of the amplitude and phase of the random phasor sum according to
P (A 0) = pg, (Acos(6), Asin(6)) ||| (6)

where |J]|is the Jacobian of the transformation of variables. The resulting joint PDF is

Pa (A0)=7 Azexp(—;;z) (7)

no
Of particular interest is the marginal PDF of the amplitude pA(A) , which is found by

integration over @ yielding

pA(A)=§exp(—2’; ] ®

which is a Rayleigh density function. Alternately, the marginal PDF of the phase is found
by integrating over the amplitude and is uniformly distributed over (0, 2 ). Thus, the
joint PDF is factorable into the marginal PDFs, and the amplitude and phase of the
random phasor sum are independent [Goodman, 2007:7-13].

While these results are interesting, most optical detectors measure irradiance, I,

not amplitude or phase. Thus, it is necessary to use another transformation of variables.

Ignoring scaling constants, | = A? . By using the same process as previously,

10



P (1)= Pa(A()I3] =500 50 | ®

which is a negative exponential PDF. Speckle characterized by this PDF is often referred

to as “fully developed speckle” [Goodman, 2007:28]. The mean irradiance is easily
calculated as < | >=207 . Further, the standard deviation is o, = 26 , equal to the
mean.

Speckle contrast is a measure of the strength of the speckle effect and is defined

as

o,

C=

(10)
<l>

which the reader may recognize as the inverse of the standard optical definition of SNR.
From this definition, the speckle contrast for fully developed speckle is unity. In general,
speckle contrast will be reduced from unity by a number of speckle reduction factors to

be discussed next.

2.2 Speckle Contrast Reduction

A number of factors can reduce speckle contrast. For tactical active tracking, the
relevant factors are polarization diversity, surface roughness, and surface slope.
Polarization diversity was investigated by early researchers, often in combination with
other effects [Goodman, 2000:248-250]. The other two factors both involve source
bandwidth and surface properties. The impact of surface roughness for polychromatic
(finite coherence length) illumination was investigated both experimentally and
theoretically in the 70s [Sprague, 1972; Pedersen, 1975a; Nakagawa and Asakura, 1979].

Also during that timeframe, the effects of geometry on polychromatic speckle for non-

11



imaging systems were investigated by Pederson and Parry [Pedersen, 1975b; Parry,
1975]. McKechnie extended the theory to imaging systems around the same time
[McKechnie, 1976]. Almost twenty years later, Hu derived an expression for
polychromatic speckle contrast which allowed for any imaging and illumination
geometry except those involving near glancing angles with the surface [Hu, 1994]. The
recent work involved experimentation, application, and engineering simplification of this
theory [Huntley, 1999; Rodrigues and Pinto, 2003; Markhvida et al., 2007; Tchvialeva et
al., 2008; Tchvialeva et al., 2011].

The first factor, polarization diversity, can reduce speckle contrast by up to a
factor of two. Under polarized illumination, the rough surface may have the effect of
separating the reflected light into the two linear polarization states, each of which can
produce an independent speckle field. If the illuminator is unpolarized, then two
independent speckle fields can form from each of the two illuminator polarizations
[Goodman, 2007:142-143]. However, this condition is unlikely in active tracking, as
most illumination lasers are nearly fully polarized [St. Pierre, 1997; Post, 2004]. For
arbitrary polarization diversity, a commonly-used approximation is to reduce the contrast

according to
c=\J1+P)/2 (11)

where P is the degree of polarization [Goodman, 2007:49]. Allowing for both partial

source polarization, 7., and partial reflection polarization, 2., the speckle contrast for

polarization diversity is

c=V J(1+B*)(1+£?) (12)

12



Thus, while polarization diversity can reduce speckle contrast by up to a factor of 2 (from

four independent speckle fields), the probable case for active tracking is a reduction by

V2 or less.

The next factor, surface roughness, is also generally small, producing C ~1 for
typical tactical active tracking conditions. Under the assumptions of Gaussian source
spectrum and surface height distribution, and after a good bit of math, Goodman shows

that speckle contrast for the surface reflection case is given by
C= [1+ 27 (MT (ﬁjz (cos(8,)+cos(8 ))2](%) (13)
A ) 4 ! "
where A4 is the full 1/e spectral width of the source, 4; is the mean wavelength, o, is the
standard deviation of the surface heights, 6, is the angle between the surface normal and
the incident illumination, and &, is the angle between surface normal and imaging LOS
[Goodman, 2007:176]. For the specific case of active tracking, the equation can be

simplified slightly with 6,, ~ 6

im !

/1 2 2 (7%)
C ={1+87r2 [AZ] [%] cosz(em)} (14)

This equation can be plotted for extreme parameters. First, the coherence length

which yields

for modern pulsed illumination lasers is typically in the range of 0.1 to 3 cm [St. Pierre,
1997; Post, 2004] (for a more detailed discussion, see [High Energy Laser Joint
Technology Office, 2013]). Assume a worst-case (highest contrast reduction) of 1 mm

coherence length at 1 um wavelength. Using the typical coherence conversion ( Av ~ c/I,

13



). this yields 2% = &Y _ 3ell
A v, 3eld

=0.001 . Coherence reduction clearly increases with

increasing o, , so assume a value of 400 pum. For reference, one heavily rusted rolled
homogeneous armor (RHA) plate had measured o, of 383 pm [Stanton et al., 2005]. For

such conditions, the speckle contrast as a function of LOS angle is shown in Figure 2.1.
Even for this extreme case, contrast is reduced by less than a factor of 2 at most. Note
that speckle contrast actually increases with increasing slope angle due to reduced
apparent surface roughness. From this result, it is clear that speckle contrast is not greatly

reduced by surface roughness.
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Figure 2.1. Speckle contrast for a “worst-case” (highest contrast reduction) scenario with 1 mm coherence
length, 1 pm wavelength, and 400 pum surface height standard deviation. Speckle contrast never falls below

one half.
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One reduction factor has not yet been considered, surface slope, sometimes
referred to as “geometry” or “illuminator and image directions.” An analytical expression
for speckle contrast given an arbitrarily sloped surface under partially coherent
illumination was first developed by Hu [Hu, 1994]. Hu assumed Gaussian surface height
distribution. A closed-form solution has not been found, but rather the equation is left in

integral form,

O ) [1/” } I d4,dA,S(4)S(4, )exp(_4ﬂ202(cos(9im)+cos( I”)) (12, 1//11))

2

4 c08(6, ) 2c08(6,) A
[[7|H (4R ARy)[ dxdy[ [ |H (2,Rx, 4,Ry)[* dxdy

‘”:H[@R(x— sin (Gn) j@RyJH*{%R[X_ sin(6,) _tan(@m)+taﬂﬂ(j’im)}lzRy]dxdy

(15)

where S(1)is the source spectral distribution, R is the target to aperture distance, o is
the surface height standard deviation, &, is the angle between the surface normal and the
illumination vector, 6,, is the angle between the surface normal and the imaging vector
(with the opposite sign convention asé,,), x=x'/AR, y=y'/AR , xand y are the pupil

plane spatial coordinates, and H is the pupil function [Hu, 1994]. To arrive at this
equation for speckle contrast, Hu first found the point spread function (PSF) for a sloped
surface target. Next, he computed the image-plane complex amplitude and its cross-
correlation, accounting for surface roughness and arbitrary illumination angle. By
assuming a Gaussian distribution of surface height and solving for the image-plane
irradiance autocorrelation, the speckle contrast equation followed directly. This equation
uses relatively few approximations and is based on physical optics, but it is not directly

suitable for numerical simulation of active imaging, as its integral form requires
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considerable computation time. However, it is still useful as a point of comparison with
the computationally efficient equation discussed next, and it will be taken as truth moving
forward.

Because of the computation time required to solve Hu’s integral equation,
Huntley developed a simplified model for engineering applications in 1999 [Huntley,
1999]. Huntley’s key equation defines the number of independent coherence regions seen
by each pixel based on geometrical approximations as

N 1+2rsin(z,|y+%) (16)

C

where r=/p>+h*> |, p=as , aisascaling constant of order unity, s=1.22AR/D ,R
is the distance between object and aperture, h= o , Sis a scaling constant of order
unity, o is the surface height standard deviation, v is the angle between the surface
normal and the bisector of the illumination and observation rays, and |_is the source
coherence length. Huntley also used the common approximation for speckle contrast
givenN ,

Crr (17)

JIN
Further, Huntley’s values for « and £ are based on a curve fit of his equation to Hu’s over
a wide range of possible conditions.
Although the curve fit of Huntley’s equation to Hu’s shows relatively low error, it
accounts for surface roughness, which is accounted for separately in this work by using

the more exact expression presented previously. Also, it does not utilize the theoretically-
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grounded corrections which have been developed to allow one to use geometrical
approximations with little error (no error for certain well-bounded problems) [Goodman,
2000:242; Bures et al., 1972]. An expression for N fundamentally linked to Huntley’s
derivation but avoiding the two pitfalls just mentioned is

alR

N =2tan(6) (18)

C

where @ is the angle between the coaxial illumination and imaging directions and the
surface normal, « is a scaling constant of order unity (the IFOV coefficient), D is the
imaging aperture diameter, and |, is the illuminator coherence length. This equation
should be thought of as simply the number of coherence areas on target seen by each
pixel. The leading factor of two accounts for the two-pass reflection of light approaching

the surface from the imaging direction. Thus, 2tan(0)aAR/D is the effective surface

depth, and the division by |, breaks the depth up into coherence areas caused by surface

slope. From curve fits to the more exact Hu equation, the IFOV coefficient « is 1.749 for
either a Gaussian or Lorentzian source distribution (see Section 4.1). The geometrical

correction factor for N for a Gaussian source distribution [Goodman, 2000:242] is

1 ) -1
N, ={erf (x/;N)—;N 2[1—exp(—;zN2)]} (19)
For a Lorentzian distribution, it is
N, = {iJrli[exp(—zN)—lj}l (20)
N 2N?

These correction factors allow perfect accuracy of speckle contrast computation from a

simple count of the number of coherence areas if the boundaries are sharp and well-
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defined [Goodman, 2000:242]. For the case of diffraction-dominated pixel viewing area,
the final result is not exact, as the viewing area boundaries are not sharp, but it 1s still
quite accurate as will be shown in the Results chapter. For now, suffice it to note that for
a typical active illumination engagement, the reduction due to short coherence length and
sloped target surface tends to dominate, as shown in Figure 2.2. Here, the speckle
contrast drops below 0.5 due to surface slope alone by 5° degrees of slope with 1 mm

coherence length, a 30 cm aperture, 1 pm wavelength, and 3 km range to target.
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Figure 2.2. Speckle contrast reduction due to surface slope from the modified Huntley equation. Note that
this reduction effect is considerably more significant than those considered previously. Conditions:
Gaussian source spectrum, 30 cm aperture, 3 km range to target, 1 pm wavelength, and 1 mm coherence

length.

Thus, active illumination speckle contrast reduction is caused primarily by three
factors. The first two, polarization diversity and surface roughness, usually result in

relatively small speckle contrast reduction of less than a factor of two. On the other hand,
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the final factor, target surface slope, tends to result in a large reduction in speckle contrast
under the likely condition that the target’s surface normal differs from the look angle by

more than a few degrees.

2.3 Combining Speckle Reduction Effects

Thus, under many conditions, speckle reduction due to surface slope is dominant.
Even so, it is important to account for all speckle reduction effects simultaneously. This
goal is accomplished through the straightforward multiplication of the numbers of
degrees of freedom, N , due to the independent reduction effects of polarization diversity
and combined slope and roughness, while the dependent effects of surface slope and

roughness are combined in an RSS fashion according to

Ntotal =NP(1+\/(Neﬁ _1)2+(NR_1)ZJ (21)

where N, is the final value for N which accounts for all effects, N is the value due to

total

polarization diversity, N is the corrected value due to surface slope, and N is the value
due to surface roughness [Goodman, 2007:186]. Both the computation of N, and N, and
the final computation of speckle contrast are accomplished using the common

approximation for speckle contrast givenN , C ~ 1/\/W (Eq. (17)).

2.4 Speckle Irradiance PDF
While speckle contrast provides information regarding the lower order statistics of
speckle irradiance, the statistics are completely defined by the probability density

function (PDF). While the PDF for a speckle field experiencing contrast reduction due to
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the combination of a sloped surface target and a short coherence length source is not
available in the literature, under the simplifying approximations of the modified Huntley

equation, the equation for speckle irradiance PDF is well-known. Under these

approximations, the irradiance PDF, p, (7)), 1s found to be gamma distributed

N
N ™ I
p(1)= (—J eXP[—N—] (22)
(1)) T(™) {1)
where N can be either N if only surface slope contributes to speckle reduction or N, if

multiple factors come into play, and(l )is the mean irradiance [Goodman, 2000:247;

Goodman, 2007:42].

2.5 Speckle Size

Another property of speckle which is of prime interest to active tracking work is
the size of the speckles in the image. Because all detectors and most tracking algorithms
mvolve some degree of spatial integration, they inherently reduce the impact of speckle.
However, to determine whether or not that reduction might be significant, it is necessary
to know the size of the speckles.

The classical van Cittert-Zernike theorem can be applied to this end. It gives an
expression for mutual intensity (aka amplitude autocorrelation) given the intensity
distribution of an incoherent source. However, this theorem makes several assumptions
which must be evaluated for tactical tracking engagements. First, the theorem assumes
that the wavefront leaving the target contains the effects of many scattering features. This
condition is clearly satisfied for almost all active tracking engagements due to the long

ranges and small (usually microscopic) sizes of surface features. Second, the illumination
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and aperture areas must be much smaller than the range to target ensuring that only small
angles are present. Once again, this condition is easily satisfied for active tracking.
Finally, the illumination area must be very broad compared to the pixel field of view on
target. Again, this condition is easily satisfied, as HEL systems typically use much
smaller apertures for illumination than for imaging, but still warrants some further
discussion [St. Pierre, 1997; Post, 2004]. It essentially ensures that a large number of
speckles are present across the imaging aperture, which in turn implies a large number of
coherence areas across the aperture. Under such conditions, the aperture itself can be
treated as a spatially incoherent source, and van Cittert-Zernike can be applied to the
propagation from aperture to image plane. Thus, the requirements of this theorem are
satisfied for the vast majority of active tracking scenarios.

Having justified the use of the van Cittert-Zernike theorem, it can now be applied
to evaluate speckle size and irradiance autocorrelation in the image plane. The theorem
states that the field amplitude autocorrelation function is simply a scaled Fourier
transform of the irradiance distribution, in this case, the irradiance distribution just past

the imaging aperture. Using this result, assuming a circular aperture, and removing the

mean irradiance, the speckle irradiance normalized covariance functionc, (r) is given by

] (ﬂ'DI’)Z

2z

¢ (N=RP—5—~ (23)
Az
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where J; 1s a Bessel function of the first kind, order one, and  is radial distance

[Goodman, 2007:77]. Note that this function is circularly symmetric. Also, normalized

covariance is little different from autocorrelationI",(7) and 1s related to it according to

_ L) - <1>2
(1)

Speckle size follows from this result. First, recognize that normalized covariance

c;(7)

24)

1s equal to complex correlation coefficient magnitude squared. Thus, Goodman’s

definition of coherence area applies [Goodman, 2000:210]:
4= [[|u(ax, A_v)|2dArdA_v = {[ e, (Ax,Ap)dAxd Ay (25)
The resulting coherence area is
4,=(22) [(7, D) (26)
From the equation for irradiance covariance, the speckles will clearly have circular
symmetry. Thus, speckle radius, 7, , 1s given by

B 24z

r="= 27
s 27)

which can be thought of as approximately a 1/eradius of speckle irradiance

autocorrelation.
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I11. Experiment Methodology

A laboratory experiment was conducted for the purpose of partial model
validation. In particular, validation of the dominant contrast reduction effect for active
illumination, surface slope, was desired. As a further benefit, this experiment will fill in a
gap in published work, as validation for the imaging geometry has not yet been
published, and limited similar experiments have been published to date [Parry, 1975:88-
115; Tchvialeva, 2008].

A 670.96 +/- 0.10 nm wavelength diode laser with short coherence length was
used to illuminate a rotating rough surface, as is shown in Figure 3.1. The diode was a
Toshiba TOLD9200 laser mounted to a thermoelectric cooler (TEC). Both diode current
and temperature required precise control to maintain stable output power and coherence
over the length of time needed to measure speckle for a particular slope angle. For this
experiment, the current and temperature were set to 56.0 mA and 17.00°C respectively,
producing a coherence length of 259 +/- 7 um. After the beam left the laser, it was
clipped by a 3.08 +/- 0.05 mm aperture to remove some of the side lobes of the multiple-
transverse-mode beam. This truncation had no effect on irradiance in the central lobe on
target, but only served to reduce stray light. It also did not alter the roughly elliptical laser
beam shape. The beam then encountered an anamorphic prism pair, which shrunk the
long dimension of the elliptical beam and produced a more circular beam of about 1 mm
diameter. This small beam then propagated 3.778 +/- 0.016 m to a negative lens. The
long propagation guaranteed spatial coherence, as will be discussed later and as is typical

of HEL active illuminators, which use larger apertures for imaging than for illumination.
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The negative lens further expanded the beam before it struck the rough surface to ensure
adequate irradiance uniformity, as will also be discussed later. A silver-coated diffuse
reflector (220 grit) was chosen as the target for its high reflectance in the visible and
fairly Lambertian bidirectional reflectance distribution function (BRDF). It was rotated
about the surface normal between image captures to randomize the rough surface features
seen by each pixel, thus randomizing the speckle field and obtaining more independent
speckle samples. The process of recording the speckle patterns for many rotation angles
was repeated for surface slope angles of 0° to 15° to vary the observed speckle contrast.

Light scattered off of the target was reflected towards the detector by a mirror.
Prior to reaching the detector, any depolarization due to the rough surface was removed
by a linear polarizer. This process greatly simplified the data analysis. The light
propagated 2.934 +/- 0.018 m before passing through an aperture of 2.72 + 0.03 mm
diameter and positive lens of 20 cm focal length. The detector (a Marlin F131B
connected to Matlab® via Carnegie Mellon University’s FireWire Camera Driver) lay in
the image plane of this lens to record the speckle irradiance. This detector had the cover
glass removed to eliminate any interference effects other than speckle which tend to
occur with coherent imaging using a standard complimentary metal-oxide semiconductor
(CMOS) camera.

The experimental design involved the careful balancing of many competing
factors, some of which were just mentioned in the description of the layout. The factors
balanced are discussed in the following sections and were the number of speckle samples
obtained, laser power and coherence length, spot size, target reflectance, speckle size, and

pixels per speckle width.
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Figure 3.1. The experiment layout for speckle image model validation. The diverging laser beam either
propagated to the silvered rough surface for speckle measurements or was deflected by a translating mirror

to a Michelson interferometer for coherence length measurement.

3.1 Required Number of Speckle Samples

First, the number of speckles present in each recorded image was chosen to be 20.
For statistical purposes, a large number of samples is desirable to reduce the error bounds
on the computed mean and variance. However, obtaining more speckles per image
requires a wider illumination area on target, thus spreading the laser power over a wider

area and reducing the number of photons reaching each pixel of the detector. The number
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20 was chosen such that sufficient photons reach the pixels to provide a mean SNR much
greater than 1. After experimentation began, this number was increased to about 150 to
satisfy irradiance uniformity requirements to be discussed later, considerably reducing
mean irradiance. Figure 3.2 shows a typical speckle image with about 150 speckles
within it. The masking which is clearly visible in this figure was done at the half

irradiance point, as determined from the mean irradiance estimate to be discussed shortly.

190
200
210

220

Y Plxels

230

240

250

280 300 320 340
X Pixels

Figure 3.2. A typical speckle measurement. Here, the surface slope is 6° (C = 0.73), and the threshold
for masking based on mean irradiance is set to 0.5 times the peak mean irradiance. Irradiance is normalized
by the mean pixel irradiance. Approximately 150 independent speckles are present. Keep in mind that a

speckle can be bright, dark, or intermediate.

The number of speckle samples required is driven by the need to reduce the error

bounds, not about the computed mean or variance, but about the computed speckle
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contrast. Because the speckle contrast of the intensity sum of N independent speckle
fields is gamma distributed, the standard error equation developed for Gaussian
distributions does not apply for the small values of N encountered during these
experiments, though by the central limit theorem, it does apply for large N. The accepted
convention is to use numerical analysis to estimate the error bounds [Tchvialeva, 2011].
In this work, the error bounds were estimated numerically using a Matlab® script
(numberOfSamplesRequired.m in Appendix B). The script first creates a large number of
random speckle irradiances for N coherence areas. This step is accomplished by
propagating N randomly rough phase screens through an aperture sized to produce 4.8
samples per speckle, which matches the experiment conditions, and averaging the results.
This process is repeated many times to generate the required number of speckle samples.
The samples are divided into groups of M speckle samples, and the M values are used to
compute speckle contrast of each group. By doing this for 1,000 groups of M speckle
measurements, the standard deviation of the groups’ contrasts about the mean speckle
contrast is computed with little error. The error bounds are then defined as +/- one
standard deviation about the mean. They are greatest for N = 1, or fully developed
speckle [Tchvialeva, 2011], where 1,790 speckle samples results in error bounds of +/-
1.9% (2-sigma). The error bounds were seen to drop with increasing N, falling to +/-
0.8% by N = 4.

Since each image produced only about 150 speckle samples, 12 independent
images were taken for each slope angle. Given a 25.4 mm diameter target utilized to 12.7
mm diameter and about a 1.74 mm diameter pixel viewing area on target, up to about 23

unique speckle patterns can be obtained simply by rotating the target surface between
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image captures. During the actual experiment process, 12 measurements were taken,
producing about 1,800 independent speckle measurements and reducing error bounds
sufficiently.

It should also be noted that source irradiance was quite non-uniform across the
target area. The target rotation also allows for removal of this non-uniformity. By rotating
the target smoothly about its normal while taking 400 speckle images, then averaging the
speckle images together, estimated pixel values proportional to the mean irradiance on
target were found. A typical mean irradiance estimate is shown in Figure 3.3. Note that
some pixel-by-pixel or “salt and pepper” noise is still visible even after averaging 400
images, possibly due to detector non-uniformity rather than read-out noise. Regardless,
detector non-uniformity is removed by normalizing to mean irradiance computed in this
way. Further, the effects of slowly varying dark current noise (horizontal banding) are
visible around the 1/e? irradiance levels due to the long integration times and high gain

levels needed to compensate for very low irradiance on target.
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Figure 3.3. An estimate of mean irradiance on target given in digital counts. The surface slope is 6°, and

400 images were taken as the surface was rotated and averaged to estimate the mean.
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3.2 Speckle Spatial Sampling

The speckles also needed to be resolved on the FPA in order to obtain good
contrast measurements. One way to think about this fact is to consider that if many
speckles form across each pixel, then they are averaged together, and the number of
independent speckles contributing to each pixel is greatly increased, skewing the
statistics. Measuring the core speckle statistics requires much less than one speckle per
pixel. Another Matlab® script was used to address this issue
(speckleSpatialSampling_testOfPixelAveraging.m in Appendix B). This script also
defined a uniform amplitude source field with delta-correlated random phase and
propagated it through an aperture to a focal plane. Different values of N were evaluated
by averaging multiple independent speckle patterns together. It was found that two
samples per speckle yields a deterministic contrast error of about -10.5%, four samples
yields -2.6%, and eight samples yields -0.65% contrast error regardless of the value of N.
Furthermore, error was found to decrease linearly with the square of the pixels per
speckle. Because the error is a constant offset, it is easily removed from the experimental
data. Even so, keeping the error small allowed more straightforward troubleshooting of
the experimental layout. Thus, 4.80 pixels per speckle width were chosen, producing a
constant error of -1.81%. This bias was removed from the final data set. Figure 3.4 shows
an example speckle irradiance autocorrelation from a single speckle measurement set.

The speckle width is observed to be about 4.8 pixels as expected.
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Figure 3.4. Speckle irradiance autocorrelation for a single speckle measurement set at 0° slope. The width

of the autocorrelation is a measure of speckle width and is about 5 pixels (taking /'!,/D as speckle width).

3.3 The Imaging Setup

In order to properly resolve the required number of speckles while maintaining
enough energy per pixel for imaging, the imaging setup had to be very carefully selected.
See the Matlab® script imagingScenario.m in Appendix B for a numerical investigation.
Assuming a detector with 13.4 um pixel pitch, a source with wavelength of 670.96 nm,
an aperture with diameter 2.72 mm, and source projecting 1.5 mW onto the full width
half maximum (FWHM) beam area on target, then the aperture-to-FPA distance had to be
about 0.20 m and the object distance 2.934 +/- 0.018 m. To be more precise, the 1:14.7
ratio was critical, while the exact distances could be scaled up or down to match the
physical constraints of the lab and hardware. The speckles were 64.3 +/- 1.2 um wide in

size on the FPA, and the pixel size on target (IFOV) was 1.77 +/- 0.03 mm. If the source
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intensity is spread over about 1600 pixels for a 9.6 cm beam diameter on target, giving
150 speckle samples, then the irradiance at each pixel should be about 1.15 nW/mm?.
While the minimum detectable irradiance for the Marlin detector used in this work was
not known, a similar CMOS device had SNR = 2 at 2 nW/mm? (DCC1545M) [Thorlabs,
2014]. Thus, the speckle irradiance is barely detectable above the noise. In practice, each
speckle measurement was taken 20 times and averaged together to reduce the noise by
about a factor of 4.5. Additionally, operation at slope angles at or below 15° for the rough
surface, which is not perfectly Lambertian, provided some additional irradiance beyond

that predicted by the Lambertian assumption used here.

3.4 Coherence Area on Target

In tactical active tracking for an HEL weapon, one would expect that the
coherence area of the illumination on target would be greater than the IFOV, as the
illuminator aperture is usually considerably smaller than the imaging aperture [St. Pierre,
1997; Post, 2004]. In order to guarantee that this condition was also satisfied in the
experiment, the illumination beam was propagated far enough to ensure a coherence area
greater than the pixel viewing area. A worst-case spatially incoherent source, such as an

LED, was assumed. Then, the van Cittert-Zernike theorem was used in conjunction with
the definition of coherence area, A = _|"|'|y(Ax,Ay)|2d AxdAy , where z(Ax, Ay)is the

complex coherence factor, to define the coherence area of a uniformly bright source of

any shape and with area A as

(28)
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Given a propagation distance, z, of 3.778 m and source area of 8.28e-7 m?, the coherence
diameter assuming circular symmetry was 3.1 mm at the negative lens (see Figure 3.1),
which was then expanded by the lens to 6.3 mm, much larger than the pixel viewing
width of 1.77 mm. Thus, a source propagation distance of 3.778 m ensured good spatial

coherence across each pixel’s viewing area.

3.5 Irradiance on Target

Finding a source to satisfy the previously defined requirements proved
challenging. It was established that about 1.5 mW of irradiance needed to fall over an
area of 9.6 mm diameter on target to get enough photons to the detector. However,
coherence length also needed to be kept short, on the order of 100 — 300 um, to get
multiple coherence areas within the IFOV due to surface slopes in the range 0° to 15°.
Two source options were considered. First, LEDs have coherence lengths on the order of
10 um, which is so short that the slope of the target would need to be measured very
precisely to keep error bounds small. Alternatively, LED coherence length can be
increased to > 100 um with use of a narrow band spectral filter which attenuates away
most of the light. The LED would need > 50 mW of power for such use. Very few LED
options exist which meet these requirements (50 mW power with peak emission near
632.8 nm to allow use of a 1 nm laser line filter, and < 30° divergence to allow
collimation) including the Vishay VLCS5830 and Avago HSMC-A431-X90M1 which
would have to be tested to determine whether they meet the requirements in practice, and
even if they do, do not provide a power advantage over the laser sources discussed later.

Another strike against an LED source is the fact that they are incoherent sources with
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fairly large emission area and high divergence, making collimation difficult. If collimated
using an f = 11 mm aspheric lens to 1.5 mm diameter (for a very narrow 8° divergence
LED), over a propagation of 2 m (required for spatial coherence) and assuming a 500 pm
die size, the LED irradiance would spread to 9.1 mm. Prior to starting the experiment, the
planned beam size on target was much smaller than 9.1 mm, and only later was the
experiment redesigned to allow such a beam size. Thus, while LEDs may be just
adequate to meet the needs of this experiment, none were tested due to the difficulties
regarding coherence length and collimation.

The other option considered, and the one chosen, was the diode laser. Inexpensive
diode lasers often have coherence lengths between 100 um and 3 mm [Rotge et al., 1992;
Deninger and Renner, 2010]. Further, diode coherence length can be decreased by
reducing diode current below the nominal value [Rotge et al., 1992]. Additionally, diode
lasers can be well-collimated through use of an aspheric lens, as they have relatively
small emission areas. Thus, a diode laser can provide both high power on target and low
coherence length with considerably fewer complications than encountered with an LED.

As was mentioned, it was not initially apparent that the beam needed to be
expanded to 9.6 mm FWHM on target. It was initially theorized that a beam diameter of
half that value would be sufficient to ensure adequate irradiance uniformity over each
pixel’s viewing area of 1.74 mm. However, after dozens of failed attempts to obtain
speckle contrast near unity for 0° slope, it was observed that the main lobe had fine
irradiance variations at higher spatial frequencies than could be resolved by the imaging
setup. This fact may have been due to the multiple-transverse-mode diode laser.

Regardless, greatly expanding the beam beyond the initial plan allowed speckle contrast
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to rise significantly closer to unity. For the final layout, the laser beam was first
propagated 3.778 m to allow diffraction to blur out the high spatial frequencies before
expansion by about a factor of 2 using a negative lens. The negative lens further
expanded the beam beyond the limits of diffraction, as propagation over more than 4 m
was not feasible due to laboratory space limitations. With this configuration, speckle

contrast near unity for 0° slope was obtained.

3.6 Coherence Length Measurement

Prior to starting experimental work, it was not known what type of laser would
provide the necessary coherence length, though diode lasers were considered a prime
candidate. Thus, many lasers had to be tested. Ultimately, the Toshiba TOLD9200 671
nm diode laser proved to be an acceptable source. The coherence length of a diode laser
can vary over time due to thermal changes. For this reason, prior to taking any
measurements, the diode was turned on and allowed to cool down (TEC cooled) to steady
state over a period of at least 10 minutes. The coherence length was then measured for
each start-up of the diode using a Michelson interferometer. The source beam was
diverted to the interferometer by adding a mirror. Coherence time was computed from the

complex degree of coherence according to

7, = J.|7(r)|2dz' (29)

where 7 is the temporal difference. The complex degree of coherence was itself

computed from the fringe visibility according to

7@)=V (h) (30)
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where h is the path difference. V is the fringe visibility, defined by

V Imax — Imin (31)

Imax + Imin

where |, and | . are the maximum and minimum irradiance in the fringe pattern

respectively [Goodman, 2000:158-168].

The first stage of the experiment involved testing the coherence length of various
lasers using the Michelson interferometer. Lasers tested included five laser pointers, one
laser module, and one diode laser. The laser pointer wavelengths tested included samples
in the blue, green, yellow, and red spectral bands, and all exhibited similar coherence
properties with fringe contrast dropping from a peak to a minimum over about 1.3 mm of
optical path length difference before rising again. This periodicity is caused by the
multiple longitudinal modes characteristic of diode lasers. The modes are widely spaced
due to the short effective cavity length of diode lasers, creating a pseudo-discrete
spectrum and producing coherence which drops off and rises again many times as path
difference increases. The depths of the troughs and the heights of peaks varied from one
unit to the next, but all exhibited troughs no less than 0.2 and coherence lengths in excess
of 1 cm. Figure 3.5 shows fringe visibility versus optical path length difference for an
Infiniter red laser pointer. The periodic fluctuations are clearly visible, as is the fact that
coherence does not drop off much out to 1 cm path difference. Thus, coherence length of

this unit was much greater than 1 cm, a characteristic common among laser pointers.
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Figure 3.5. Infiniter red laser pointer fringe visibility. Note that coherence rarely drops much below 0.6
over 1 cm of path length difference, indicating that coherence length is much greater than 1 cm. However, a

periodic fluctuation is also very apparent.

The next lasers tested were the diode laser module and the laser diode. The
module proved to be very similar to laser pointers when operated at the rated voltage of
5.0 V. However, when operated at 3.3 V, the coherence length dropped down to the point
that the diode may have been functioning as an LED rather than as a laser (coherence
length of 10 to 20 pm). The module used a simple resistor to control current, and thus
output power was greatly reduced at 3.3 V versus 5.0 V. Up to this point in the process,
no acceptable lasers had been found, as a coherence length of 100 to 500 pm was needed
with decent output power. However, the Toshiba TOLD9200 laser diode proved to be the
answer. One of the first observations made with this diode was that the coherence length

varied proportionally with output power. Thus, by controlling the drive current (and
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output power), the coherence length could be adjusted to the desired value. The
temperature also needed to be controlled to prevent mode hopping and increase the
stability of both coherence length and output power. Drive current of 53.5 mA at 17.06°C
produced coherence length of 125 +/- 7.8 um and power of about 1.1 mW. However,
more power was needed. At 56.0 mA and 17.00°C, the power was about 3.5 mW, while
the coherence length was measured at 246 +/- 7 um. The stability of the coherence
length, assuming control of the drive current and temperature, was found to be very good
with standard deviation of only 3.14% from measurement to measurement at 53.5 mA
and 1.4% at 56.0 mA. Most of that deviation is probably due to measurement error, but
separation of measurement error from coherence length drift was not achieved. Even so,
such stability was more than adequate for this work. The one possible issue that remained
with the TOLD9200 diode was that achieving short coherence required a reduction in
output power from maximum. As was already noted, the 3.5 mW output proved to be just
adequate to take measurements at low slope angles. Typical fringe visibility plots for the
conditions previously described are shown in Figures 3.6 and 3.7.

The means by which coherence length was computed deserves some additional
discussion. Obtaining good fringe visibility with the Michelson required a three step
process. First, the cover was placed on the camera and thirty images were taken in rapid
succession. These thirty images were then averaged together to form the dark image to be
subtracted from all future images to increase accuracy. Second, the mean detected
irradiance was found in a similar manner, this time by rapidly changing the path length
difference, which moved the fringes across the detection area. Once again, many images

were taken and averaged together, with the result being the estimated average irradiance.
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This average 1rradiance was then used to normalize all measurements by the average
uradiance detected by each pixel, effectively removing non-uniformity in both irradiance
and detector response. Finally, the fringe visibility was computed for each path length
difference by capturing seven images, averaging them to reduce shot noise, masking off
only the region with mean irradiance above the 1/e” irradiance level, and finding the

minimum and maximum normalized irradiance for use in the fringe visibility equation.
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Figure 3.6. Toshiba TOLD9200 diode fringe visibility at 53.5 mA and 17.06°C as measured by a
Michelson interferometer. Note the steady drop in visibility over a path difference much smaller than was

considered for the diode pointer earlier. Coherence length is 125 pum at 1.1 mW output power.

As previously discussed, it 1s well known that fringe visibility has a direct
relationship to the complex degree of coherence, which in turn is directly relatable to
coherence length. However, the tails of the visibility were unmeasureable with the
Michelson, as noise prevented accurate measurement of visibility below about 0.3. Still,

the fringe visibility of this diode was found to closely follow an exponential decay above

38



that threshold. Thus, a curve fit was done, fitting an exponential to the measured data
above 0.3 visibility. The curve fit provided the visibility values below 0.3. In general,

using the curve fit data for the tails increased the total coherence length by about 8%.

1 e Measured Dataf]
09 —— = Exporential Fit ||
Y%_ + FitData
— 08—%
*
2 0.7 7{,
c
206 <
2 05 .
2 9,
> 04 :3!‘.
o
c
£ 03 Qq.\*
02 St
0.1 *"'-1%_,,
0 Tty
0 02 04 06 08 1

Path Difference [mm]

Figure 3.7. Toshiba TOLD9200 diode fringe visibility at 56.0 mA and 17.00°C as measured by a
Michelson interferometer. Coherence length was measured at 246 pm, roughly double that of Figure 3.6

due to the increase in power to 3.5 mW.

Thus, using a Michelson interferometer with this procedure, the TOLD9200 was
found to be adequate for this experimental work. Its coherence length was 246 +/- 7 pm
at 56.0 mA drive current and 17.00°C according to the Michelson.

The power spectral density of the source was also measured using a Czerny-
Turner spectrometer to validate the Michelson interferogram measurements. At first, a
small unit (Thorlabs CCS175) was used, but its spectral resolution of ~0.5 nm FWHM
was insufficient to properly measure the overall spectrum of the laser of about 0.6 nm

FWHM, let alone to resolve the individual longitudinal modes. Thus, a 1.33 m focal
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length McPherson 209 Czerny-Turner monochronometer was also used, and its results
were found to be of adequate resolution of about 0.02 nm FWHM. A McPherson “snap-
in” grating with 500 nm blaze, 1200 grooves/mm, and 110 x 130 mm size was used. Slit
width was set to about 33.4 um, thus filling the grating with light along one dimension.
The monochronometer output was passed into a photomultiplier tube (PMT), chosen for
its high dynamic range and SNR, which was in turn connected to a Keithley 486
Picoammeter.

The measurements of the diode laser’s spectrum are shown in Figures 3.8 and 3.9.
Figure 3.8 shows several notable features. First, the hundreds of longitudinal modes are
indistinguishable in this figure due to their close spacing (about 0.17 nm). Second, the
laser’s spectrum covers a wide spectral range of several tens of nanometers, mostly due
to the low power wings of the distribution. Finally, the laser spectrum rides upon a
considerable plateau likely caused by some combination of the blurring together of the
individual modes and some incoherent light output. Figure 3.9 shows the seven strongest
modes in linear space. Here, the spacing of the modes is seen to be about 0.17 nm (or 110
GHz), while each mode has width about equal to that of the resolution of the instrument,
indicating that the spectral profile of each mode is not well-resolved. The length of the
optical cavity, L, can be calculated from mode spacing if the refractive index of the lasing

material is known by using the well-known equation L =c/2nAv , where n is the

refractive index and Av is the mode spacing in Hz. For this laser, the material is not
known, but many common laser materials (such as gallium arsenide, indium phosphide,
and gallium antimonide) have refractive index around 3.8, indicating that cavity length

may be about 360 pm, which seems reasonable.
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Figure 3.8. TOLD9200 diode laser spectrum in log space as measured by a McPherson 1.33 m focal length
Czerny-Turner spectrometer. The hundreds of longitudinal modes are blurred together in this figure, but the
overall profile in log space is apparent. The spectrum sits upon a strong pedestal caused by some
combination of incoherent light output and the real blurring together of the closely spaced modes (about

0.17 nm apart). Further, the modes extend over quite a wide spectral range of several tens of nanometers.

It is worth mentioning that a spectral calibration of this data was performed using
Krypton lines. A partial pressure Krypton pen light emitted into the instrument
concurrently with the diode laser, and its well-known spectral lines were used to calibrate
the output. Some of those spectral lines are shown in Figure 3.10. For the calibration, two
Krypton spectral lines were used below 650 nm, and seven were also used above 700 nm.
Because the Czerny-Turner spectrometer’s output is very nearly linear in wavelength
with grating rotation, a simple linear calibration was sufficient to reduce absolute
wavelength error to a small fraction of a nanometer and relative wavelength error over

the spectral range of the laser to much less than that. Further, because the PMT’s
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response was quite flat over the spectral region of interest, calibration of its irradiance

response with wavelength was not necessary.
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Figure 3.9. TOLD9200 diode laser spectrum in linear space showing only the seven strongest modes. The

individual modes are separated by about 0.17 nm.
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Figure 3.10. Spectral lines of the partial pressure Krypton lamp. These lines are readily apparent in the

measurement of the diode laser spectrum. The highly linear response of the spectrometer in wavelength

with rotation allowed a simple linear calibration based on such lines.
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Further, the McPherson PSD measurements support the previous observation that
coherence length increases with output power. Figure 3.11 shows a comparison of PSDs
at four different power levels. The PSDs clearly become peakier as power increases.
Stated differently, the maximum power density is increased, while the power in the wings

remains about constant, indicating that coherence increases with power.
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Figure 3.11. A comparison of diode laser PSDs at four different power levels. From left to right and top to
bottom, the power levels are 1.1, 3.5, 5.9, and 9.0 mW respectively. Note that the spectrum narrows, with

highs becoming higher, as power increases.
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Fitting a Lorentzian to the measured PSD shows good agreement near the peak
and some disagreement in the wings. Figure 3.12 shows such a fit. A moving average
filter of width 100 (about 0.22 nm wide) was used to smooth the measured PSD. The
Lorentzian fits the measured data very well near the peak of the distribution. However,
out in the wings, the measured data is considerably lower than the Lorentzian model
predicts. Further, the measured data shows asymmetry which is not captured by the

Lorentzian, though this asymmetry may be due to the lack of PMT spectral response

calibration, and it does not appear at all significant.
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Figure 3.12. A comparison of the smoothed spectrometer PSD with a Lorentzian curve fit. The fit matches
the data quite well near the peak, but the wings of the distribution show considerably lower power than
modeled by the Lorentzian fit. Also, the wings show some asymmetry not captured by the Lorentzian. A

moving average filter of width 100 (about 0.22 nm) was used here to smooth the measured PSD.

Of course, it is possible to compute the coherence length by converting the PSD

to complex degree of coherence (which is normalized to have a peak value of 1; see



Figure 3.13) and integrating the absolute value squared over time difference. Such a
procedure indicates a coherence length of 259 +/- 7 um, which is 5.3% longer than
measured with the Michelson interferometer. A comparison of PSD-based visibility and
Michelson-measured visibility in Figure 3.13 reveals the cause of the difference.
Primarily, the cause is the slightly higher visibility computed from the PSD than
measured by the Michelson. Additionally, while an exponential decay curve fit was used
to extrapolate the Michelson data beyond its noise limit of about 0.3, the PSD-based data
shows a temporary leveling-off around 750 um, which is of course not modeled with the
exponential curve fit. These two causes of extra fringe visibility likely account for the
slightly longer PSD-based coherence length and should represent reality. Of note, the
PSD-based fringe visibility also needs to be cutoff at some point in the coherence length
integral to avoid integration over more than one of the multiple coherence peaks which
result from the discrete spectral nature of the lasing modes. Here, it was cutoff at 1 mm
path difference, the largest difference likely to have any significant impact on speckle
contrast results for surface slopes up to 15°. Still, even integrating out to 2 mm path

difference only increased coherence length from 259 to 262 um.
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Figure 3.13. Fringe visibility based on the PSD measurement compared to Michelson interferometer
measurements. The PSD-based visibility indicates a coherence length of 259 pm, while the Michelson-
based result, after exponential decay extrapolation, indicates 246 +/- 7 pm. The difference is likely mostly

caused by the slightly higher fringe visibility computed from the PSD than measured by the Michelson.

3.7 Temporal Stability of PSD

It was important that the spectral output of the diode laser either remains almost
constant over time or changes rapidly enough that each speckle measurement effectively
used the long time average PSD, such that there would not be differences in the PSD
from one speckle measurement to the next. To investigate, a Thorlabs CCS-175 compact
Czerny-Turner spectrometer was used to observe the PSD stability over time. While its
resolution is poor compared to the McPherson instrument, its silicon detector array
allowed variations on integration time which were not permitted with the PMT-based
scanning McPherson. Six measurements were taken over a period of 34 minutes and with
both 50 us and 40.96 ms integration times. The former corresponds to the shortest

integration times used during this work (for some of the Michelson interferometer
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measurements), while the latter corresponds to the longest (for the speckle images). In all
cases, the PSD variation was almost imperceptible from one measurement to the next.

Maximum and minimum computed coherence lengths were less than 2% different. Figure

3.14 shows an example of such variation between measurements, and in this case the
difference in computed coherence length is only 0.33%. Note that individual laser modes

are not visible due to the instrument’s wide resolution of 0.5 nm FWHM. The excellent

stability 1s likely due to the TEC used to stabilize the diode temperature and prevent

mode hopping.
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Figure 3.14. Two PSDs captured with different integration times. The left plot was taken with 50 ps
integration time, while the right plot was taken with 40.96 ms integration time. The differences are
insignificant. Computed coherence length changed by only 0.33% between the two measurements,

indicating good temporal stability.

3.8 Target Surface Properties

The physical properties of the rough surface target (shown in Figures 3.15 to
3.17) are also of some importance. For one, the surface height standard deviation is an

mput to both Hu’s theory for speckle contrast reduction and the theory regarding contrast
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reduction due to surface roughness. Further, all of the speckle theory discussed here
assumes that many rough surface features are visible to each pixel, implying that the
surface correlation length is much less than the IFOV. Thus, the standard deviation and
correlation length of the rough surface were measured using a profilometer.

A Zeiss microscope captured images of the rough surface target at varying
magnifications, as shown in Figures 3.15 to 3.17. The target was illuminated from the
front using a source with a yellow tint. Combined with the response of the camera used,
this yellowish source produced images with an apparent gold tint. Perhaps the most
important take-away from these figures is that the surface appears to be free of uncoated

patches and significant defects in the coating.

Figure 3.15. The silver-coated 220-grit diffuse target as viewed by a microscope. The apparent gold tint is
due to a combination of illuminating light with a yellow tint and the camera. To the naked eye, the surface

appeared quite silver. Magnification here is 10x.
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Figure 3.16. The rough target at 20x magnification. Note that the tallest surface features are now out of

focus.

Figure 3.17. The rough target at 50x magnification. Note that the surface appears to be cleanly coated in

silver. No major imperfections are visible.
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The statistics of the rough surface were computed from the profilometer
measurements. An example of the measured surface profile over a 10 mm span is shown
in Figure 3.18. Because the profilometer surface was not level, no information regarding
gross surface slope was obtained. Rather, all measured slope was removed from the data,
which was taken near the center of the target. The peak to null correlation was measured

at 122 pm, as shown in Figure 3.19. Surface height standard deviation was 3.27 pm.

€
3 .
£
2
% - ' F
0 L1 bt
§ ' | H )
-
? (1
{
-8
-10
-5 -4 -3 -2 -1 0 1 2 3 4 5

Ax [mm]

Figure 3.18. A profilometer measurement of surface height near the center of the 220 grit silvered diffuser
target. The profilometer was not leveled prior to measurement, but rather all measured slope was removed

from this data.

Regarding the number of rough surface features seen by each pixel, the surface
autocorrelation 1s shown in Fig. 3.19. Measured autocorrelation one-sided width was 122
pum. Since each pixel saw about a 1.77 mm diameter region on target, approximately 200
independent rough surface features were visible to each pixel, which is sufficient to make

the necessary large number approximations with little error.
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Figure 3.19. Surface height autocorrelation as a function of linear displacement. The peak to null width is

122 pm.

Further, the common approximation regarding surface height distribution is that it
follows a Gaussian function. Figure 3.20 supports that assumption for this surface. While
more data points would be necessary to determine exactly how close the surface height is
to Gaussian, the available data clearly shows a Gaussian-like distribution. Thus, having
mvestigated surface height distribution, standard deviation, and correlation length, all

necessary properties of the surface are defined.
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Figure 3.20. Rough surface height distribution with a least-squared error Gaussian curve fit overlay. The
data does seem to fit a Gaussian distribution, though more samples would be necessary to verify that

theory. The standard deviation of the measurements is 3.27 pm, while the mean is only 7 picometers.

3.9 Experiment Procedure

In the previous discussions regarding optical layout parameter selection, the topic
of experimental procedure came up occasionally and 1s now discussed in more depth. To
begin experimental measurements, the diode laser source and temperature controller were
first turned on at least 10 minutes prior to taking any measurements so that it could reach
optical and thermal steady state. Next, the laser coherence length was measured via a
Michelson interferometer (see Section 3.6). After that, the path from the imaging lens to
the detector was shielded from stray light using a combination of lens tubes and
cardboard, and the room lights were turned off, making the laser light the vastly dominant
source of target illumination.

Speckle measurements were then taken. First, a dark image was captured by

blocking the laser light near the source, capturing thirty images, and averaging those
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together to reduce shot noise. This dark image was subtracted from all subsequent
speckle measurements to reduce the dark current noise (aka fixed pattern noise). Next,
the target surface slope was adjusted to the desired angle, and the detector gain and
integration time were set such that saturation was only just avoided, thus utilizing the full
detection range and minimizing the impact of quantization of detected irradiance to an 8-
bit number. Speckle was then measured by taking a series of 12 sets of images at
different axial rotation angles from 0° to 360° to capture many independent speckle
realizations. Each set of images at a particular axial rotation angle involved 20 image
captures, the results being averaged together to reduce shot noise. Following speckle
measurement, the mean irradiance on target was estimated by averaging 400 images
taken as the target was rotated continuously to randomize the speckle. This mean
irradiance estimate was used to normalize the speckle measurements on a pixel-by-pixel
basis, thus mitigating the effects of irradiance and detector non-uniformity. Of note, a
separate dark image was captured and used for the mean irradiance data set, as dark
current noise does change slowly over time. Thus, the experimental procedure consisted
of careful setup, coherence measurement, speckle measurement, and mean irradiance

estimation.
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1V. Results

The results from the experiment measurements were compared to theory for
speckle contrast, speckle irradiance probability density function (PDF), and speckle size.
As will be shown, all comparisons of experimental data with theory are good, while the
speckle contrast comparisons agree very well. From these results, Hu’s model and the
modified Huntley model are found to be valid, at least for the range of conditions studied

here.

4.1 Speckle Contrast

After the experimental procedure was complete, post-processing was straight-
forward. Within the FWHM mean irradiance masked region, any pixel values below zero
(due to dark image subtraction) were truncated to 0, though this truncation was never
observed to change the computed contrast by more than 0.1%. The final data set for a
particular slope angle included all 12 sets of speckle measurements, totaling about 1,800
independent speckle samples. Using that data, the mean and standard deviation of the
normalized speckle irradiance were computed, leading to the speckle contrast value,
which is simply the standard deviation divided by the mean.

Figure 4.1 shows the comparison of measured speckle contrast with standard error
bounds to both Hu’s more exact theory and the computationally efficient Huntley
equations, both in original and modified versions. The widths of the error bounds
represent uncertainty in the measured slope angle. Figure 4.2 shows the same

comparison, but with single measurement uncertainty shown instead of error bounds.
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Comparing the data to Hu’s theory, excellent agreement is observed. The same can be
said for the Huntley equations, both original and modified. The modified Huntley curve
plotted here assumes a Lorentzian source distribution, which reasonably approximates the
true distribution (see Figure 3.12), as well as a coefficient of 1.749, which was found to
minimize squared error between the Hu and modified Huntley models over a wide range

of tactically relevant conditions, as will be discussed in more depth later.
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Figure 4.1. A comparison of measured speckle contrast with both Hu and Huntley theory. Solid agreement
is observed between all three. Some discrepancies between Hu’s more exact theory and the
computationally-efficient modified Huntley theory are observed, but these differences are small with mean
difference of 1.4% and difference standard deviation of 1.0%. The measured data also shows some small

disagreements with Hu’s theory with -1.1% mean difference and 2.9% standard deviation.

The shortcomings of the original Huntley equation begin to become evident
around 0.6 speckle contrast. At that point, the original Huntley predicts higher values

than the other equations or the measurements, a trend which continues as contrast drops
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further, as will be shown later. Further, some discrepancies between the Huntley
equations, the Hu equation, and the data are visible. To quantify the differences, taking
the Hu equation as truth, the modified Huntley equation had mean error of 1.4% and
standard deviation of error of 1.0% over the region shown, while the measured data had -
1.1% mean error and 2.9% standard deviation. Thus, the measured data and both models
all agree well, leading to the conclusion that the theory is valid over the contrast range of

about 0.55 to 1.
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Figure 4.2. A comparison of the measured speckle contrast to both Hu and Huntley theory. In this plot,

single measurement uncertainty is shown instead of standard error bounds.

The vertical error bounds on the data in Figure 4.1 were computed from
experimental measurement variation based on the definition of the standard error of the

mean. The standard error of the mean, SEM, is given by

SEM =o/IN (32)
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where o is the standard deviation of the measurements (shown in Figure 4.2) and N is
the sample size. The SEM defines the range over which 68% of measurements should
fall. Its use requires that the error be unbiased and normally distributed. Figure 4.3 shows
that the error distribution is very roughly normally distributed (based on only 32
samples), supporting use of standard error here, though true justification would require a
much larger sample set. Of note, the -1.8% bias due to only 4.8 samples per speckle
radius was removed previously such that the speckle contrast measurements are also
expected to be unbiased, an assumption which is justified by the solid match between
experimental data and Hu’s theory with mean difference of only -1.1%. With the
understanding that SEM is appropriate for use here, the vertical error bounds shown in
Figure 4.1 define the approximate range over which 68% of mean estimates should fall if
this experiment were repeated an infinite number of times. Phrased differently, the
plotted vertical error bounds show the approximate 68% confidence intervals. The plot
shows that 11 of 16 or 68.75% of the bounds do include the Hu curve, a fact which
supports the conclusion that Hu’s theory is valid.

The standard error bounds are largely constant over the range of surface slopes
shown, indicating that measurements could have been taken at even higher slope angles.
However, the speckle contrast was measured prior to measuring the true laser PSD. At
that point, a Gaussian source distribution was assumed, causing the data to break away
from the theoretical curve at about 10° slope. However, it was assumed at that time that
dark noise was the cause of the break-away, and thus, data was only taken out to 15°

slope.
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Figure 4.3. An example of the speckle contrast measurement error distribution employing 32 speckle
contrast measurements. Note that the distribution of error can very roughly be taken as normally

distributed.

Two other error bounds are also shown in Figure 4.1. First, the horizontal width
of the error bounds on the measurements represents the slope angle uncertainty. These
error bounds are uniform from one angle to the next at +/- 0.25°, the approximate
resolution of the rotation plate. Lastly, two Hu theory curves are plotted, one for the
upper bound and one for the lower bound. These bounds are based on uncertainty in three
other measured parameters which are used as inputs to the Hu equation, namely peak
wavelength, imaging aperture diameter, and object distance.

The Huntley equation IFOV coefficient value of 1.749 was chosen to minimize
squared error between the modified Huntley equation and the Hu equation. The original
Huntley equation was also fitted to Hu’s theory, but a new curve fit was necessary due to
the improvements made to the Huntley equation as a part of this work, and two detailed

examples of this curve fit are shown in Figures 4.4 and 4.5. In Figure 4.4, a Gaussian
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source spectrum is used with tactically relevant parameters (see the figure caption for
details). The plot on the left shows a direct comparison between Hu’s theory and the
modified Huntley equation, and agreement is excellent for the overall least squared error
IFOV coefficient of 1.749. On the right, the difference between the two is shown. This
difference peaks near unity contrast (zero slope), where it appears that the geometrical
approximations break down to some extent. Error is 0.8% mean and 1.8% standard
deviation. One might ask whether the fact that the Hu theory accounts for speckle
reduction due to surface roughness while the modified Huntley equation does not has any
mmpact on this curve fitting. That fact does not have any impact, as the surface roughness
of only 3.27 pm standard deviation, much smaller than the coherence length of 1 mm,
reduces speckle contrast by an insignificant amount. This figure also shows the original

Huntley equation results, which differ significantly from the Hu theory below about 0.5

contrast.
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Figure 4.4. Fitting the modified Huntley equation to Hu’s more exact equation. The plot on the left shows
the LSE comparison of the two equations. along with the original Huntley equation, while the plot on the

right shows the modified Huntley equation error. Note that the greatest error occurs near unity contrast
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(zero slope). The source PSD here is Gaussian. Parameters: 0.3 m aperture diameter, 5 km range, 1 uym

wavelength, and 1 mm coherence length.

Figure 4.5 shows much the same data for a Lorentzian source spectrum. Once
again, the highest error occurs near unity contrast, while the total error is 1.5% mean and
2.3% standard deviation. Also of note, a modern Intel 17-4770 CPU took about 16 hours
to generate the Hu theory data used in these curve fits, while it took only about 20
milliseconds to generate the Huntley curves at about 30 times higher resolution,

illustrating the numerical advantage of the Huntley equation for direct calculations.
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Figure 4.5. Fitting the modified Huntley equation to the Hu equation for a Lorentzian source distribution.
Once again, the left plot shows a direct comparison of the two, along with the original Huntley equation,
while the right plot shows the modified Huntley error. Also as before, the largest error occurs near unity

contrast. Parameters: 0.3 m aperture diameter, 5 km range, 1 pm wavelength, and 1 mm coherence length.

The final value for IFOV coefficient of 1.749 involved 24 curve fits over a wide

range of parameters relevant to tactical tracking. Tables 4.1 and 4.2 summarize the curve
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fits for Gaussian and Lorentzian source spectrums respectively. Both used the same set of
parameters including aperture diameters of 0.3 to 1.0 m, object distances of 500 to 20,000
m, wavelengths of 1 and 1.5 um, and coherence lengths of 0.1 to 2 mm (not including the
experiment parameters, which fell well outside those ranges). The shown best-fit
coefficients produced the smallest squared error for each parameter set and ranged from
1.677 to 1.868. The chosen IFOV coefficient of 1.749 was the mean of these best-fit
coefficients. The mean error percentages are shown for both the best-fit for each
parameter set and the best overall fit. Using the best overall fit coefficient of 1.749, the
mean error of the modified Huntley equation was 0.37% while the standard deviation was
2.02%. Thus, using an IFOV coefficient of 1.749 produced low error over the wide range

of conditions tested.

Table 4.1. Data summarizing the curve fit of Huntley’s equation to Hu’s theory for a Gaussian spectrum.

Aperture 2.72
Dia. (m) 0.3 0.3 0.3 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 mm
Object Dist. 10 20 10
(m) 500 500 | 5km km km 500 500 500 500 | 5km km | 2.934
Wavelength
(pm) 1.000 | 1.500 | 1.000 | 1.000 | 1.000 | 1.000 | 1.500 | 1.000 | 1.500 | 1.500 | 1.500 | 0.671
Coh. Lgth.

(mm) 0.100 | 1.000 | 1.000 | 1.000 | 2.000 | 0.100 | 0.100 | 1.000 | 1.000 | 0.500 | 1.000 | 0.259

Best-Fit
Coeff. 1.709 | 1.777 | 1.706 | 1.706 | 1.706 | 1.777 | 1.768 | 1.866 | 1.822 | 1.726 | 1.726 | 1.776

Best Mean

Error % 0.345 | 0.715 | 0.252 | 0.252 | 0.252 | 0.637 | 0.543 | 1.604 | 1.454 | 0.282 | 0.272 | 0.646
Best Std

Error % 1946 | 2.185 | 1.646 | 1.646 | 1.646 | 2.167 | 2.069 | 2.725 | 2.758 | 1.731 | 1.727 | 2.056
Mean Error - - - - - -

% 0.632 | 1.323 | 0.802 | 0.802 | 0.802 | 1.323 | 1.047 | 2.904 | 2.469 | 0.253 | 0.263 | 1.248

Std Error % | 2.143 | 1.982 | 1.829 | 1.829 | 1.829 | 1.957 | 1.931 | 2.032 | 2.231 | 1.824 | 1.820 | 1.864
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Table 4.2. Data summarizing the curve fit of Huntley’s equation to Hu’s theory for a Lorentzian spectrum.

Aperture 2.72
Dia. (m) 0.3 0.3 0.3 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 mm
Object Dist. 10 20 10
(m) 500 500 5 km km km 500 500 500 500 5 km km 2.934
Wavelength
(um) 1.000 | 1.500 | 1.000 | 1.000 | 1.000 | 1.000 | 1.500 | 1.000 | 1.500 | 1.500 | 1.500 | 0.671
Coh. Lgth.

(mm) 0.100 | 1.000 | 1.000 | 1.000 | 2.000 | 0.100 | 0.100 | 1.000 | 1.000 | 0.500 | 1.000 | 0.259

Best-Fit
Coeff. 1.679 | 1.778 | 1.677 | 1.677 | 1.677 | 1.774 | 1.763 | 1.868 | 1.830 | 1.702 | 1.702 | 1.774

Best Mean

Error % 0.532 | 0.592 | 0.266 | 0.266 | 0.263 | 0.875 | 0.706 | 1.108 | 1.019 | 0.307 | 0.298 | 0.608
Best Std

Error % 2.689 | 1.768 | 2.045 | 2.045 | 2.042 | 2.662 | 2.418 | 2.062 | 2.106 | 1.976 | 1.961 | 1.731
Mean Error - - - - - -

% 1.217 | 1.217 | 1.535 | 1.535 | 1.538 | 1.487 | 1.087 | 2.556 | 2.201 | 0.839 | 0.848 | 1.164
Std. Error

% 3.060 | 1.554 | 2.327 | 2.327 | 2.322 | 2.453 | 2.300 | 1.353 | 1.550 | 2.176 | 2.155 | 1.530

4.2 Speckle Irradiance PDF

To compare theoretical to experimental PDFs, the entire data sets for a particular
slope angle were used to form histograms, which, after normalization to integrate to
unity, represent the measured irradiance PDFs. Those PDFs can then be compared to the
approximate gamma PDFs based on N from the modified Huntley approximation, as
discussed in Section 2.4. Such comparisons are shown in Figures 4.6 to 4.9. In Figure 4.6,
the measured PDFs for very low slope angles (0° and 2°) peak slighter higher and to the
right of the approximate theoretical distributions. Figure 4.7 shows slopes of 4° and 6°,
for which the data again peaks higher and to the right of the theory. In Figure 4.8, the
peak placements are about collocated, but once again the measured data shows lower
probability of near zero irradiance and higher peak probability than predicted. Figure 4.9
shows much the same result for the highest slopes of 12° and 14°. Thus, while the

Huntley approximation matches the speckle contrast well, the Gamma approximation for
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PDF based on the Huntley approximation does not match the data nearly as well. The
distributions appear to be fundamentally different. Some of this difference can be
explained by the fact that shot noise, which has a non-zero-mean Gaussian distribution,
tends to blur the measured PDF and shift it rightward, but that factor cannot explain why
the measured irradiance peaks higher than predicted by theory. It is unfortunate that exact

PDF models are not available in the literature for comparison.
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Figure 4.6. Experimental and theoretical speckle irradiance PDF comparisons for surface slope of 0° and
2°. Decent agreement is seen between theory and measurement, but there are considerable differences.

Namely. for these very low slope angles, the measured PDFs peak higher and to the right of the theory.
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Figure 4.7. Experimental and theoretical speckle irradiance PDF comparisons for slopes of 4° and 6°. Once

again, the experimental PDFs peak higher and to the right of the theoretical ones.
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Figure 4.8. Experimental and theoretical speckle irradiance PDF comparisons for slopes of 8° and 10°. The
experiment PDFs now peak close to the irradiance levels of the theoretical peaks, though the distributions

are still clearly different.
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Figure 4.9. Experimental and theoretical speckle irradiance PDF comparisons for slopes of 12° and 14°.
Now, the experimental peak might be slightly to the left of the theory. The experimental PDFs still peak to

higher values.

4.3 Speckle Size

In Section 2.5, the theory regarding speckle size was established. A comparison of
the experimental results to that theory is worthwhile to better establish the credibility of
the results and to check for anything unexpected. Such a comparison is shown in Figure

4.10. Here, decent agreement is observed between the data and the theory, though notable
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differences exist for shifts between 1 and 3 pixels. Of note, the combined data from all

slope angles indicates that 1/e speckle width is about 12% smaller than predicted by

theory.
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Figure 4.10. A comparison of measured speckle size (autocorrelation) to the established theory. Decent
agreement is shown, but differences exist, especially over the range of 1 to 3 pixel shifts. The 1/e point falls
in this range, and the measured 1/e speckle width for all slope angles combined is 12% narrower than

predicted by the theory.

The autocorrelation based on experimental data was computed by first windowing
the normalized speckle images using a square window over a region of mean irradiance

always greater than half its maximum value. Next, the Weiner —-Khinchin theorem was

used to estimate the autocorrelation, p , according to

p=F{F{L}F{I}* (33)
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where F is the Fourier transform and 1, is the measured speckle irradiance. After that, the

estimated autocorrelation from each speckle measurement was averaged together.

As was noted previously, it appears that speckle observed during the experiment
was narrower than expected from theory. A numerical simulation was also run with 4.8
pixels/speckle to investigate whether the sampling may have caused the difference, but
that does not appear to be the case. Rather, either noise, small speckle image size,
uncertainty in experimental parameters, or some combination of the three must be the
cause. Even if the speckle width truly is 4.24 pixels, the only major change in speckle
contrast findings would be due to a change in the 1.8% correction factor for constant
speckle contrast error due to few pixels per speckle. That factor would become 2.3%,
resulting in -0.6% mean difference between the measurements and Hu’s theory instead of
the presented -1.1% mean difference. Such a change would not alter the conclusion that
the Hu theory is validated by this experiment, so no further investigation into true speckle
size was done.

Also of note, the speckle size does not appear to change with slope angle. This
observation agrees with the current understanding of speckle. Recall from Section 2.5
that speckle size is dependent only on wavelength, aperture diameter, and distance
between the aperture and the detector. Thus, surface slope and the associated degrees of
freedom should not impact speckle size. While a tiny increase in size with slope is visible
in Figure 4.10, this increase could easily be due to noise, as the observed autocorrelation
was not always higher for higher slope, but rather there was dependence on the exact
pixel shift, indicating that the apparent tiny increase in size with slope angle was in the

measurement noise.
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Thus, while observed speckle size was narrower than expected from theory, the
validation of the speckle contrast theory was not impacted. Further, speckle size did not

increase with slope, as predicted by theory.
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V. Conclusion

5.1 Summary

In this work, the statistical properties of speckle relevant to tactical HEL active
illumination were investigated with a focus on rapid numerical modeling to address a
current need to simulate such systems for system design, target recognition, aimpoint
identification, and tracking algorithm development. Equations were presented for the
statistics of fully developed speckle as well as the reduction in speckle contrast due to
polarization diversity, target roughness, and target slope. Further, theory was shown
regarding the size of speckles and the approximate PDF of reduced contrast speckle. For
active illumination, speckle contrast reduction is often dominated by the interaction of the
short coherence length of the source and the slope of the target surface, while other
factors generally reduce speckle contrast by less than a factor of two. Because the most
exact equation available for sloped surface speckle, developed by Hu, does not have a
known closed-form solution, a simpler equation, the modified Huntley equation, was also
developed. This equation uses geometrical approximations. It also includes a previously
derived correction factor to improve accuracy over the original Huntley expression. By
minimizing squared error compared to Hu’s equation, the modified Huntley IFOV
coefficient was found to be 1.749, and agreement between the models was solid with
0.4% mean error and 2.0% standard deviation over a wide range of tactically relevant
conditions. The Huntley approximations also allowed the use of a closed-form

approximation for speckle irradiance PDF involving the Gamma distribution. The final
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theoretical mention was the well-known equation for speckle size with a circular imaging
aperture.

With the theory defined, an experiment was designed to validate the sloped target
speckle theory. Many competing factors were balanced. The initial design carefully
balanced and controlled speckle spatial sampling, number of speckles captured, pixel
IFOV on target (and number of rough surface features sampled), detector dark current
and shot noises, laser coherence area on target, and laser coherence length. Many sources
were tested, and the Toshiba TOLD9200 laser diode was finally selected for its short
coherence length. Even with this source, obtaining the short coherence length necessary
to observe reduction in speckle due to target slope under laboratory space constraints
required that power be limited to about 3.5 mW. Further, ensuring that the illumination
coherence area was greater than the IFOV was found to be insufficient for this source, as
fairly small, but unacceptable, levels of illumination nonuniformity were still present in
each IFOV. Thus, further expansion of the beam such that the minimum diffraction-

limited spatial period (AR/D) was about three times the IFOV was necessary, further

reducing irradiance on target. Irradiance on target was low enough that even after
periodic correction for dark current noise and averaging twenty speckle measurements
together to reduce shot noise, speckle measurement beyond about 15° slope, or speckle
contrast of about 0.55, was not attempted due to excessive noise. Even so, useful
measurements were taken up to 15° slope.

Comparison of the experimental results with theory validated the contrast
reduction models, agreed fairly well with speckle size theory, and showed considerable

disagreement with the approximate PDF model over the range of conditions tested.
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Comparing Hu’s theory for contrast reduction due to slope to the experimental
measurements showed excellent agreement with 11 out of 16 of the experimental 68%
confidence interval bounds encompassing the theoretical curve. The difference between
Hu’s theory and measurements had a mean of -1.1% and standard deviation of 2.9%.
Some disagreement between the Hu and Huntley equations was also observed, especially
near unity speckle contrast where the geometrical approximations appear to break down
to some extent. Still, the disagreement was small with mean difference of 1.4% and
standard deviation of 1.0%, indicating that the Huntley equation’s numerical efficiency
should justify its use in many cases. These results indicate that both models, modified
Huntley and Hu, are valid, at least over the range of speckle contrast test here. The
measured speckle size was also in decent agreement with established theory, though
measured speckle size was somewhat smaller than predicted by continuous theory.
Ultimately, that difference had no impact on model validation conclusions. Also, as
expected, speckle size did not appear to change with slope angle. Further, the measured
speckle irradiance PDFs differed rather significantly from the theoretical PDFs based on
the geometrical approximations of the Huntley model, with higher and narrower observed

peaks than were predicted.

5.2 Future Work

Future research can build on this work in several areas including incorporation of
the new sloped surface speckle model into simulation packages, development of target
and aimpoint ID algorithms based on this speckle model, extension of sloped target

speckle contrast validation out to lower contrast levels, and development of an exact
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speckle irradiance PDF model for comparison with measurements. Regarding HEL
tracking modeling, numerical simulation software such as the High Energy Laser System
End to End Model (HELSEEM) and Physics-based Imaging and Tracking of Ballistics,
UAVs, and LEO Satellites (PITBUL) are used during the initial phase of HEL system
design to determine what tracking hardware is necessary to meet performance
requirements. With the incorporation of the modified Huntley model into these
simulation packages, they will provide more accurate results regarding active tracking
performance. Increased accuracy will lead to better hardware and cost estimates from the
initial design phase. Further, more accurate active tracking simulations will allow better
evaluation and tuning of tracking algorithms prior to physical testing. This modeling
improvement will reduce the time and cost required during the field test phase by
providing better performance estimates prior to field tests during the inexpensive
simulation phase.

Additionally, new target recognition and aimpoint ID algorithms can be
developed to exploit the target information included in speckle imagery. The target’s
surface slope has a large impact on speckle contrast. Further, for a moving platform
and/or target, speckle usually decorrelates quickly over time, providing many
independent speckle images in a fraction of a second. Thus, by first using a short time
sequence of speckle images to estimate speckle contrast across the target (see Figure 5.1),
surface slope across the target can then be computed using the modified Huntley
equation. The speed and accuracy of the new speckle model could allow this computation
to be done in real time during military operations. From slope, a three-dimensional model

of the portion of the target visible to the camera could be constructed to aid in target
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recognition. Alternatively, the slope could be used to identify aimpoints on the target by
looking for abrupt changes, such as often occur at the vulnerable wing joint of an aircraft
where the slopes of the wing and of the body often differ significantly.

Figure 5.1 shows an example of speckle contrast estimation using 0.25 seconds of
speckle video. From this figure, it is clear that some image processing might be needed to
reduce noise. Even so, some interesting features are clearly visible, including peaks in
speckle contrast on the nose cone and turret ball, where slope angle drops close to zero.
Surface slope near zero is desired for optimal coupling of HEL energy into the target
surface, so both of those points could be useful aimpoints. Another interesting feature is
the dip in contrast at the wing joint, which is also a potential aimpoint. Some initial
research has already shown promise for this type of aimpoint ID [Van Zandt, 2014].
Thus, the modified Huntley equation could allow development of new target and
aimpoint 1D algorithms for field use.

As another area for future research, additional model validation out to lower
contrast levels could be accomplished in one of two ways. First, dark current noise can be
further reduced by implementing a fast electronic shutter to allow near instantaneous
capture of both dark images and speckle images. Such a method allows a separate dark
current image for each speckle image. The range of contrast measurement could be
extended modestly, ultimately being limited by shot noise, which introduces a bias in
measured irradiance as shot noise becomes very large. That bias could theoretically be
removed by deconvolution of the measured PDF with the blur function due to shot noise,
though deconvolution of noisy signals is challenging. Eventually, some noise floor will

be reached which cannot be overcome by current techniques. The second option to extend
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contrast measurement range is to use a laser designed to have both short coherence length
and high output power. For example, the Toptica iBeam SMART 640 offers 150 mW of
power with coherence length around 100 um, but was outside the budgeted range of this
work. Such a laser would increase SNR and allow a considerable increase in

measurement range, probably to below 0.2 contrast.
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Figure 5.1. Estimate of speckle contrast across a UAV target from 250 milliseconds of simulated active
illumination video. Notable features include a dip in speckle contrast at the wing joint and peaks on the

nose cone and turret ball where surface slope drops close to zero. PITBUL was used for the simulation.

Another possibility for future work is the development of more exact theory for
sloped target speckle irradiance PDF. The comparisons of measured PDFs with the
approximate model showed considerable discrepancies. Thus, the development of a
sloped surface speckle PDF model which does not rely on as many approximations would

be valuable progress.
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Appendix A — Numerical Modeling of Speckle Video

Simulating time sequences of speckled imagery in the presence of multiple
speckle reduction factors is challenging. Numerical simulation requires as short a
computation time as possible so that even very large studies can be completed in a
reasonable timeframe. Additionally, a good degree of accuracy is required such that the
results are broadly relevant. With these goals in mind, a rapid simulation approach was
developed which uses a weighted sum of fully speckled field amplitude and unspeckled
field amplitude in the image plane. The weighting is computed such that speckle contrast
exactly matches the value computed using the multiple effect speckle reduction method
of Section 2.3, which utilizes the modified Huntley equation developed in Section 2.2.
Higher-order statistics differ somewhat, but overall accuracy is found to be acceptable for
a numeric model, and computation time is short. Further, numerical methods for
simulating aperture and turbulence blurring and time decorrelation of the speckle field

due to platform and/or target motion are briefly discussed.

A.1 Speckle Image Generation

As discussed in Section 2.2, three speckle reduction factors come into play for
tactical active tracking, polarization diversity, surface roughness, and surface slope. In
that section, equations yielding speckle contrast due to each of those effects individually
were presented. In Section 2.3, an equation which combines all effects to produce a
single speckle contrast value was given. That equation can be used on a pixel-by-pixel

basis to compute a speckle contrast image of the target for numerical simulation.
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However, this speckle contrast image only defines the first-order statistics. In order to
create simulated 1magery, random draws must be taken from these statistics. One
particularly fast method to do so is through a weighted sum of an unspeckled (or
incoherent) field and a random fully speckled (or fully coherent) field. Note that field
amplitude, not irradiance, is used for the weighted sum. Goodman reviews the statistics

of such an operation and finds that the speckle contrast is given by

J1+2
C= r (A1)
1+7r

where 7 1s the ratio of the unspeckled irradiance over the mean fully speckled uradiance

[Goodman, 2007:30-34]. After some math, the fractional component of the total

uradiance contributed by the unspeckled component, 7, , is given by

I,= (A.2)

1ota1 \/ otal( total

where N, 1s the total number of degrees of freedom due to all speckle reduction effects.
Of course, the fractional component contributed by the random fully speckled irradiance,

(1,) . is then given by

(1,)=1-1,= (A3)

total \/ total( total —

The final irradiance, 7, 1s then given by

1= (VT s+ AT i) (a4)

where 4,,0,4,; 15 the unspeckled field amplitude, and 4 1s the fully speckle field

speckied

amplitude. This equation is applied pixel-by-pixel across the entire image.
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By using this weighted sum method, the irradiance PDF is approximated as a
modified Rician, as opposed to the usual approximation as Gamma [Goodman, 2007:31].
However, the Gamma approximation is just that, an approximation, and one which the
modified Rician matches quite well, as shown in Figure A.1. The two PDFs match nearly
exactly for both low and high numbers of degrees of freedom, N. However, for N
between about 1 and 16, some noticeable differences exist. Even so, these differences are

small enough to be tolerated in exchange for the associated reduction in run time that this

method affords.
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Figure A.1. A comparison of Rician and Gamma PDFs. The PDFs match nearly exactly for N=1 and N >

16, while for N between 1 and 16, some disagreement is visible.

The method used to generate the unspeckled (incoherent) and random fully

speckled images (fully coherent) is also worth noting. Generation of both utilizes wave
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optics simulation such that atmospheric turbulence is well-modeled. To be more specific,
a wave optics package developed by MZA Associates called WaveTrain is employed. For
fully coherent image generation, wave optics can be used directly, as wave optics is
inherently fully coherent. The source field amplitude is created by taking the square root
of the irradiance reflected from the target in the direction of the imaging aperture. The
source field phase is initialized to uniformly-distributed random numbers in the range [0,
2], which was previously noted to be the condition for fully-developed speckle. In other
words, each pixel is given a random phase to represent the randomly rough target surface.
The complete source field is then propagated through a series of phase screens which
apply random phase distortions appropriate to the level of turbulence present in each path
segment. Thus, atmospheric turbulence effects are well-modeled. The field arriving at the
imaging aperture is recorded as the fully speckled field.

Because wave optics is inherently fully coherent, for the incoherent or unspeckled
image, the “Light Tunneling” technique is used [Praus I1, 2007]. This technique
propagates a grid of point sources located at the target’s location to the imaging aperture.
The light which arrives from each point source is analyzed to compute the tilt and blur
caused by atmospheric turbulence for light originating at that location. Thus, by
analyzing all of the point sources across the target grid, the spatially and temporally
varying effects of turbulence are computed. Those effects are interpolated up to the full
image resolution and applied to the image of the target [Praus 1l, 2007]. Thus, while wave
optics is used directly for fully speckled image generation, “Light Tunneling” allows the

application of wave optics turbulence tilt and blur to incoherent images as well.
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The effects of diffraction or aperture blurring are also applied to the images.
These effects are applied in the frequency domain via the optical transfer function (OTF)
for the unspeckled or incoherent images and the amplitude transfer function (ATF) for
the speckled or coherent images. Thus, both turbulence and aperture effects are applied

prior to the weighted sum operation which creates partially speckled images.

A.2 Time Decorrelation Due to Motion

One other major effect comes into play during speckle video simulation, namely
time decorrelation of the speckle due to platform and/or target motion. Because the target
and/or platform are often moving during HEL engagements, the effective surface slope is
constantly changing. Because optical wavelengths are usually only about 1 um, very
small changes in surface slope can completely decorrelate the speckle pattern in the
image plane. Consider that when illuminating light reflects off of the target’s rough
surface, a speckle field is created across the entire hemisphere centered about the target’s
surface normal, as some light from each point on the target’s surface is reflected to all
parts of that hemisphere. The distant imaging aperture receives only a very small portion
of the total reflection, creating a speckle field across it. That unique speckle field across
the aperture then produces a unique speckle field in the image plane. To consider the
impact of changing target slope, recall the Fourier optics axiom that tilt (slope) in the near
field produces displacement in the far field. Thus, as the target slope changes over time,
the hemispherical speckle field is displaced, eventually causing a completely new portion

of the hemispherical speckle field to fall across the aperture. When this occurs, the
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speckles in the image, which are dependent upon the speckles across the aperture,
become totally independent of their previous state.

To model this in numerical simulation, a time-varying tilt is added to the phase of
the light reflected from the target. The rate of tilt change depends upon the dynamic
engagement. The faster the target and/or platform are moving, the faster the target surface
slope changes. Wave optics then produces an appropriate decorrelation of the image
speckle over time, properly representing the physics of the engagement for speckle video
creation.

Using the methods discussed in this appendix, it is possible to create time
sequences of speckled target images which include spatially and temporally varying
turbulence effects, aperture blurring, and speckle decorrelation due to motion. An
example of one image from such a time sequence is shown in the left of Figure A.2. Here,
a small UAV is laser illuminated, causing some speckle across the image. The changes in
speckle contrast across the target can be difficult to distinguish. Thus, the right side of the
figure shows computed speckle contrast using 250 ms of speckle video of the moving
target. From this figure, it is clear that speckle contrast does change across the target.
This fact highlights the potential utility of speckle decorrelation over time due to relative
motion and the need to model such effects accurately. Most prominently, speckle contrast
peaks over the nose cone and turret of the UAV, where surface slope drops down close to
0. Also, contrast drops near the wing joint of the UAV, where the slope of the body of the
UAYV increases to meet the wing at about a 90° angle. Thus, images generated using the

method described here include turbulence, aperture, and relative motion effects, and we
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have seen an example of the information present due to the speckle decorrelation caused

by relative motion, highlighting the importance of accurate modeling of such effects.

5 100 15 200 250 5 100 150 200 250

Figure A.2. A simulated image of a small UAV under laser illumination. The left side shows an
example image, while the right side shows estimated speckle contrast computed using 250 ms of speckle
video. In the figure on the left, some speckle is clearly present, though it is reduced by the short coherence
length of the illuminator and the slope of the target. On the right, it becomes more clear that speckle

contrast does change significantly across the target due to changes in surface slope.
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Appendix B — Matlab Code

B.1 numberOfSamplesRequired.m

% For N coherence areas, the speckle intensity will follow a Gamma

% distribution with shape parameter, A, equal to N and scale parameter,
B,

% equal to 10, which is equal to I/N, where 1 is the mean intensity.

% However, Matlab®s built-in Gamma function does not exactly follow

% Goodman®s definition, so the first section®s results are only
approximate.

% In the second section, speckle fields are created by propagating
randomly

% phased fields through apertures, yielding exact results.

clear; clc
%% Section 1 - Draws from a Gamma Distribution

% coherence area vector:
N=1[1234];

% Let mean intensity I equal 1:
1 =1;
10 = 1./N;

% The speckle contrast is equal to 1/sqrt(N):

C = 1./sqrt(N);

% It is also equal to the intensity standard deviation over the mean:
sigma = 1.*C;

samples = 448; % the number of speckle samples acquired
setsOfSamples = 4000; % the number of sets of samples for error
statistic computation

R = zeros(length(N), samples, setsOfSamples);

stdDevOfStd = zeros(length(N), 1);

stdDevOfMean = zeros(length(N), 1);

stdDevOfContrast = zeros(length(N), 1);

contrast = zeros(length(N), 1);

tic;

for i = 1:length(N)
A = N(i);
B = 1./N(i);
R(i, :, :) = gamrnd(A, B, samples, setsOfSamples);
stdDevOfMean(i) = std(mean(R(i, :, :)));
stdDevOfStd(i) = std(std(R(i, :, :)));
stdDevOfContrast(i) = std(std(R(i, :, 2)) -/ mean(R(i, :, 2)));
contrast(i) = std(R(i, :)) / mean(R(i, :));

end

toc

errorBounds_percentage = stdDevOfContrast ./ contrast .* 100;

% Take-away(s):
% The largest error bound occurred for N = 1, one coherence area.
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%% Section 2 - Propagation of Speckle Fields

% An alternate method is to propagate a digital speckle field and
analyze the

% results. This approach yields more accurate results due to the

% differences between Matlab®s and Goodman®s definitions of the Gamma
% distribution, which skewed the last section"s results.

% imageSize = 138; % 448 speckles per speckle field w 3.68
pixels/speckle
imageSize = 276; % 1791 speckles per speckle field w 3.68
pixels/speckle

% speckle area is assumed to be about pi * (lambda/D/2)"2
samples = 1000;

numSpeckles = (imageSize/4)"2;

specklelntensity = zeros([samples imageSize imageSize]);

x = (1:imageSize) - imageSize/2;
y = X5

[X Y] = meshgrid(x, y);

dist = sqrt(X."2 + Y_."2);

for i = 1l:samples

surfacePhase = rand(imageSize);

field = exp(li*2*pi*surfacePhase);

aperture = zeros(imageSize);

aperture(dist < 0.5/3.68*imageSize) = 1; % divide 0.5 by 3.68
to get 3.68 samples per speckle

specklelntensity(i,:,:) = abs( ifft2(aperture.*fft2(field)) )."2;
end

% autocorrelation = xcorr2(squeeze(specklelntensity(1,:,:)) -
mean(mean(specklelntensity(1,:,:))));

meanlnt = zeros(1l, samples);

stdint = zeros(l, samples);

contrastint = zeros(l, samples);

for i = 1l:samples
meanInt(i) = mean(specklelntensity(i, :));
stdint(i) = std(specklelntensity(i,:));
contrastint(i) = stdint(i)/meanint(i);

end

stdOfMean = std(meanint(:));

stdofStd = std(stdInt(:));

% *** Key Value!

stdOfContrast = std(contrastint(:));

% Take-away(s):
% These results disagree somewhat with the previous results. They

should be
% more accurate.

B.2 speckleSpatialSampling_testOfPixel Averaging.m

% This script measures the speckle contrast error introduced by a
% user-specified number of pixels per lambda/D.
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clear; clc;
close all

imageSize = 2713;
X (1:imageSize) - imageSize/2;
y = X;

[X Y] = meshgrid(x, y);

dist = sqrt(X."2 + Y_."2);

% Compute the speckle contrast of a well-sampled speckle pattern
specklelntensity = zeros([imageSize imageSize]);

surfacePhase = rand(imageSize);

field = exp(li*2*pi*surfacePhase);

aperture = zeros(imageSize);

aperture(dist < 0.5/32*imageSize) = 1; % the divisor of 0.5 defines
the fraction of the total width used by the aperture
specklelntensity = abs( ifft2(aperture.*fft2(field)) )."2;

% Here, there are about 12 pixels per lambda/D*Z
combinedSpecklelntensity = mean(specklelntensity, 3);

meanint = mean(combinedSpecklelntensity(:));

stdint = std(combinedSpecklelntensity(:));

contrast_true = stdint/meanint;

% Now, downsample the speckle pattern by a factor of 4 and see how the
% computed contrast compares.
sample = 16;
specklelntensity downSample = zeros(imageSize/sample);
for 1 = 1:imageSize/sample
for j = 1l:imageSize/sample
XRange = sample*(i-1) + (1:sample);
yRange = sample*(j-1) + (1:sample);
irrad = specklelntensity(yRange, xRange);
specklelntensity downSample(jJ, i) = mean(irrad(:));
end
end
meanlnt = mean(specklelntensity _downSample(:));
stdint = std(specklelntensity_downSample(:));
contrast_sampled = stdint/meanint;

contrastError = (contrast_true -
contrast_sampled)/contrast_sampled*100;

% Contrast error was 10.5% for 2 samples, 2.61% for 4 samples per
speckle,

% 0.65% for 8 samples per speckle.

% Contrast error:

% [0.6413, 0.6347, 0.6342] - 8 pixels/speckle; 8192 image size; 0.5/128
aperture; 16 samples/pixel

% [0.6182, 0.6318] - 8 pixels/speckle; 4096 image size; 0.5/64
aperture; 8 samples/pixel

% [0.6104, 0.5879] - 8 pixels/speckle; 2048 image size; 0.5/32
aperture; 4 samples/pixel

% So, error reduces by half with each doubling of the samples/pixel.
% True sampling error due to 8 pixels/speckle should be about 0.651.
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% The error in computed sampling error due to only 16 samples/pixel is
2.0%.

% [2.5585, 2.5676] - 4 pixels/speckle; 8192 image size; 0.5/64
aperture; 16 samples/pixel

% [10.3431, 10.2885, 10.3227] - 2 pixels/speckle; 8192 image size;
0.5/32 aperture; 16 samples/pixel

% [10.2202, 10.2139, 10.1560] - 2 pixels/speckle; 4096 image size;
0.5/16 aperture; 8 samples/pixel

% Now, the error due to 16 samples/pixel appears to be about 1.2%, but
that

% could be due to the more limited number of samples used here.

% For the experiment, there were

% 670.96e-9/0.00272*(0.046 + 1/(1/.2 - 1/2.934)) / (2*7.05e-6) = 4.7979
v pixels/speckle.

% Contrast error is therefore 2.60/(4.5597/4)"2 = 1.8071.

XX

%% Now, it will be interesting to see if those errors change at all for
% different numbers of coherence areas per pixel.

% Compute the speckle contrast of a well-sampled speckle pattern
N = 2; % number of coherence areas per speckle
specklelntensity = zeros([imageSize imageSize N]);
for i = 1:N
surfacePhase = rand(imageSize);
field = exp(li*2*pi*surfacePhase);
aperture = zeros(imageSize);
aperture(dist < 0.5/16*imageSize) = 1;
specklelntensity(:,:,1) = abs( ifft2(aperture.*fft2(field)) )."2;
end
combinedSpecklelntensity = mean(specklelntensity, 3);
meanint = mean(combinedSpecklelntensity(:));
stdInt = std(combinedSpecklelntensity(:));
contrast_true = stdint/meanint;

% Now, downsample the speckle pattern by a factor of 4 and see how the
% computed contrast compares.
sample = 4;
specklelntensity downSample = zeros(imageSize/sample);
for i = 1l:imageSize/sample
for j = 1l:imageSize/sample
XRange = sample*(i-1) + (1:sample);
yRange = sample*(j-1) + (1:sample);
specklelntensity downSample(j, i) =
mean(mean(combinedSpecklelntensity(yRange, XxRange)));
end
end
meanint = mean(specklelntensity_downSample(:));
stdint = std(specklelntensity_downSample(:));
contrast_sampled = stdint/meanint;

contrastError = (contrast_true -
contrast_sampled)/contrast_sampled*100;

% Contrast error, as a percentage, does not change with N.

84



B.3 imagingScenario.m

% % Most detectors have SNR = 2 at about 2 nw/mm™2. We have exceeded
this
% % level by a factor of 4, which is not as much as I1"d like.

% Options:

% - Relax the pixels per speckle sampling: feasible, 4

% - Reduce the propagation distance (use a smaller area per pixel): no
good

% - Increase source power: feasible but left as a last resort (more

4 security paperwork)

% — Illuminate a smaller area (reduced speckle samples): feasible, 25
% speckles, 25*472 = 400 pixels

X

% For a Gaussian beam, the FWHM occurs at 0.5888 times the beam waist.
The

% power through that FWHM is given by P*(1 - exp(-2*(r/w)”2)) and is
% exactly half of the total power.

% Assume that 1.5 mw of illumination is distributed among 1600 pixels.
% Also, assume a perfectly lambertian surface.
Is = 0.0015/1600/pi; % source intensity, w/sr

% Determine the energy entering the aperture per pixel

apDiam = 0.00272;

apArea = pi*(apbDiam/2)"2;

dist = 2.934;

apFlux = Is*apArea/dist™2; % power entering the aperture per pixel, w

% Determine the power density at the detector pixel
pixArea = (2*6.7e-6)"2;
pixlrrad = apFlux/pixArea; % w/m"2

% Convert to w/mm”2 for comparison with the camera®s minimum detectable
% irradiance:
pixlrrad_perMM = pixlrrad/100072;

timesMin = pixlrrad_perMM/(2e-9);
% Now, we are receiving about 30 times the minimum irradiance for
imaging.

% How many electrons are generated assuming 30% QE during a 0.001
second

% exposure?

pixelEnergy = apFlux*0.001;

h 6.626*10"N-34;

c = 2.998*10M8;
lambda = 670.96e-9;
QE = 0.3;

E = h*c/lambda; % photon energy
photonCount = pixelEnergy/E;
electronCount = photonCount*QE;
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List of Symbols, Abbreviations, and Acronyms

BRDF - bidirectional reflectance distribution function, a measure of the directionality of
a material’s reflection

CMOS - complimentary metal-oxide semiconductor, a common type of optical detector
CRAM - counter rocket, artillery, and mortar

DE - directed energy

FWHM - full width half maximum value

HEL - high energy laser

IFOV - instantaneous field of view, which in this work is always used to refer to the
instantaneous field of view of a single pixel

LED - light emitting diode

LOS - line of sight

LWIR - long-wave infrared, sometimes defined as the 8 to 12 pum spectral window
MWIR — mid-wave infrared, sometimes defined as the 3 to 5 um spectral window
PDF — probability density function

PMT - photomultiplier tube, a non-imaging optical detector known for exceptional
dynamic range and signal to noise ratio

PSF — point spread function
RHA - rolled homogeneous armor

SEM - standard error of the mean, an approximation for the error bound of the computed
mean value for Gaussian-distributed error

SNR - signal-to-noise ratio
TEC - thermoelectric cooler

UAYV — unmanned aerial vehicle

91



REPORT DOCUMENTATION PAGE o PProved 16

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704—-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
26-03-2015 Master’s Thesis October 2012 to March 2015
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Modeled and Measured Partially Coherent Illumination nia
Speckle Effects From Sloped Surfaces For Tactical ;’;36; GRANT NUMBER
Tracking 5c. PROGRAM ELEMENT NUMBER
n/a
6. AUTHOR(S) 5d. PROJECT NUMBER
Van Zandt, Noah R., Civilian, USAF n/a
5e. TASK NUMBER
n/a
5f. WORK UNIT NUMBER
n/a
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Air Force Institute of Technology NUMBER
Graduate School of Engineering and Management (AFIT/EN) AFIT-ENP-MS-15-M-257
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
High Energy Laser Joint Technology Office HEL-JTO
801 University Blvd SE Ste. 209 ;
Albuguerque, NM 87106 &tﬁggg(ssg)R/MONlTOR S REPORT
(505) 248-8209 n/a
Tisha.Mangold.ctr@jto.hpc.mil

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

The statistical properties of speckle relevant to short to medium range (tactical) active tracking
involving polychromatic (partially temporally coherent) illumination are investigated. A numerical model
is developed to allow rapid simulation of speckled images including the speckle contrast reduction
effects of illuminator bandwidth, surface slope and roughness, and the polarization properties of both
the source and the reflection. Regarding surface slope, Huntley’s theory for speckle contrast, which
employs geometrical approximations to decrease computation time, is modified to increase accuracy
by incorporation of a geometrical correction factor and better treatment of roughness and polarization.
The resulting model shows excellent agreement with more exact theory over a wide range. An
experiment is conducted to validate both the numerical model developed here and existing theory. A
short coherence length diode laser source is reflected off of a silver-coated diffuse surface. Speckle
data is gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55
and 1. Taking Hu’s theory as truth, the measurements have -1.1% mean difference with 2.9% standard
deviation, while the modified Huntley equation has 1.4% mean difference with 1.0% standard deviation.
Thus, the theory is validated over the range of this experiment.

15. SUBJECT TERMS
active illumination, polychromatic speckle, sloped surface speckle, speckle contrast, tactical tracking

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT | OF PAGES Dr. Steven T. Fiorino, AFIT/ENP
a. b. c. THIS uu 104 19b. TELEPHONE NUMBER (Include Area Code)
REPORT ABSTRACT PAGE (937) 255-3636 x 4506  steven.fiorino@afit.edu
U U U

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

92



	Air Force Institute of Technology
	AFIT Scholar
	3-26-2015

	Modeled and Measured Partially Coherent Illumination Speckle Effects from Sloped Surfaces for Tactical Tracking
	Noah R. Van Zandt
	Recommended Citation


	tmp.1508516207.pdf.0C5Sy

