193 research outputs found

    Inverse spectral problems for Sturm-Liouville operators with singular potentials

    Get PDF
    The inverse spectral problem is solved for the class of Sturm-Liouville operators with singular real-valued potentials from the space W2−1(0,1)W^{-1}_2(0,1). The potential is recovered via the eigenvalues and the corresponding norming constants. The reconstruction algorithm is presented and its stability proved. Also, the set of all possible spectral data is explicitly described and the isospectral sets are characterized.Comment: Submitted to Inverse Problem

    How strange are compact star interiors ?

    Full text link
    We discuss a Nambu--Jona-Lasinio (NJL) type quantum field theoretical approach to the quark matter equation of state with color superconductivity and construct hybrid star models on this basis. It has recently been demonstrated that with increasing baryon density, the different quark flavors may occur sequentially, starting with down-quarks only, before the second light quark flavor and at highest densities also the strange quark flavor appears. We find that color superconducting phases are favorable over non-superconducting ones which entails consequences for thermodynamic and transport properties of hybrid star matter. In particular, for NJL-type models no strange quark matter phases can occur in compact star interiors due to mechanical instability against gravitational collapse, unless a sufficiently strong flavor mixing as provided by the Kobayashi-Maskawa-'t Hooft determinant interaction is present in the model. We discuss observational data on mass-radius relationships of compact stars which can put constraints on the properties of dense matter equation of state.Comment: 7 pages, 2 figures, to appear in the Proceedings of the International Conference SQM2009, Buzios, Rio de Janeiro, Brazil, Sep.27-Oct.2, 200

    An Exact General-Relativity Solution for the Motion and Intersections of Self-Gravitating Shells in the Field of a Massive Black Hole

    Full text link
    The motion with intersections of relativistic gravitating shells in the Schwarzschild gravitational field of a central body is considered. Formulas are derived for calculating parameters of the shells after intersection via their parameters before intersection. Such special cases as the Newtonian approximation, intersections of light shells, and intersections of a test shell with a gravitating shell are also considered. The ejection of one of the shells to infinity in the relativistic region is described. The equations of motion for the shells are analyzed numerically.Comment: 21 pages, 8 figure

    The Role of Strangeness in Astrophysics - an Odyssey through Strange Phases

    Get PDF
    The equation of state for compact stars is reviewed with special emphasis on the role of strange hadrons, strange dibaryons and strange quark matter. Implications for the properties of compact stars are presented. The importance of neutron star data to constrain the properties of hypothetic particles and the possible existence of exotic phases in dense matter is outlined. We also discuss the growing interplay between astrophysics and heavy-ion physics.Comment: invited talk given at Strange Quark Matter 2001, Frankfurt, Germany, 8 pages, uses iopart.cls, minor modifications, version to appear in J. Phys.

    Periodic Pattern in the Residual-Velocity Field of OB Associations

    Full text link
    An analysis of the residual-velocity field of OB associations within 3 kpc of the Sun has revealed periodic variations in the radial residual velocities along the Galactic radius vector with a typical scale length of lambda=2.0(+/-0.2) kpc and a mean amplitude of fR=7(+/-1) km/s. The fact that the radial residual velocities of almost all OB-associations in rich stellar-gas complexes are directed toward the Galactic center suggests that the solar neighborhood under consideration is within the corotation radius. The azimuthal-velocity field exhibits a distinct periodic pattern in the region 0<l<180 degrees, where the mean azimuthal-velocity amplitude is ft=6(+/-2) km/s. There is no periodic pattern of the azimuthal-velocity field in the region 180<l<360 degrees. The locations of the Cygnus arm, as well as the Perseus arm, inferred from an analysis of the radial- and azimuthal-velocity fields coincide. The periodic patterns of the residual-velocity fields of Cepheids and OB associations share many common features.Comment: 21 page

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Compact stars made of fermionic dark matter

    Get PDF
    Compact stars consisting of fermions with arbitrary masses and interaction strengths are studied by solving the structure equation of general relativity, the Tolman-Oppenheimer-Volkoff equations. Scaling solutions are derived for a free and an interacting Fermi gas and tested by numerical calculations. We demonstrate that there is a unique mass-radius relation for compact stars made of free fermions which is independent of the fermion mass. For sufficiently strong interactions, the maximum stable mass of compact stars and its radius are controlled by the parameter of the interaction, both increasing linearly with the interaction strength. The mass-radius relation for compact stars made of strongly interacting fermions shows that the radius remains approximately constant for a wide range of compact star masses.Comment: 19 pages, 8 figures, refs. added, version to appear in Physical Review

    Spectral correlations in a random distributed feedback fibre laser

    Get PDF
    Random distributed feedback fibre lasers belong to the class of random lasers, where the feedback is provided by amplified Rayleigh scattering on sub-micron refractive index inhomogenities randomly distributed over the fibre length. Despite the elastic nature of Rayleigh scattering, the feedback mechanism has been insofar deemed incoherent, which corresponds to the commonly observed smooth generation spectra. Here, using a real-time spectral measurement technique based on a scanning Fabry-PĂ©rot interferometer, we observe long-living narrowband components in the random fibre laser's spectrum. Statistical analysis of the ∌104 single-scan spectra reveals a preferential interspacing for the components and their anticorrelation in intensities. Furthermore, using mutual information analysis, we confirm the existence of nonlinear correlations between different parts of the random fibre laser spectra. The existence of such narrowband spectral components, together with their observed correlations, establishes a long-missing parallel between the fields of random fibre lasers and conventional random lasers

    Gravitational-wave research as an emerging field in the Max Planck Society. The long roots of GEO600 and of the Albert Einstein Institute

    Full text link
    On the occasion of the 50th anniversary since the beginning of the search for gravitational waves at the Max Planck Society, and in coincidence with the 25th anniversary of the foundation of the Albert Einstein Institute, we explore the interplay between the renaissance of general relativity and the advent of relativistic astrophysics following the German early involvement in gravitational-wave research, to the point when gravitational-wave detection became established by the appearance of full-scale detectors and international collaborations. On the background of the spectacular astrophysical discoveries of the 1960s and the growing role of relativistic astrophysics, Ludwig Biermann and his collaborators at the Max Planck Institute for Astrophysics in Munich became deeply involved in research related to such new horizons. At the end of the 1960s, Joseph Weber's announcements claiming detection of gravitational waves sparked the decisive entry of this group into the field, in parallel with the appointment of the renowned relativist Juergen Ehlers. The Munich area group of Max Planck institutes provided the fertile ground for acquiring a leading position in the 1970s, facilitating the experimental transition from resonant bars towards laser interferometry and its innovation at increasingly large scales, eventually moving to a dedicated site in Hannover in the early 1990s. The Hannover group emphasized perfecting experimental systems at pilot scales, and never developed a full-sized detector, rather joining the LIGO Scientific Collaboration at the end of the century. In parallel, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) had been founded in Potsdam, and both sites, in Hannover and Potsdam, became a unified entity in the early 2000s and were central contributors to the first detection of gravitational waves in 2015.Comment: 94 pages. Enlarged version including new results from further archival research. A previous version appears as a chapter in the volume The Renaissance of General Relativity in Context, edited by A. Blum, R. Lalli and J. Renn (Boston: Birkhauser, 2020
    • 

    corecore