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Abstract

We solve the inverse spectral problem of recovering the singular potential fromW−1
2 (0,1) of

a Sturm–Liouville operator by its spectra on the three intervals[0,1], [0, a], and [a,1] for some
a ∈ (0,1). Necessary and sufficient conditions on the spectral data are derived, and uniquenes
solution is analyzed.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose that a functionσ belongs toL2(0,1), thatc andd , c < d , are real numbers from
the interval[0,1], and assume thath0 andh1 are arbitrary elements of the extended co
plex planeC̄ := C ∪ {∞}. We denote byT = T ([c, d], σ,h0, h1) an operator inL2(c, d)

that acts according to the formula

T u= lσ (u) := −(u′ − σu)′ − σu′ (1.1)
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on the domain domT consisting of functionsu ∈ W1
1 [c, d] with absolutely continuou

quasi-derivativeu[1] := u′ − σu, for which lσ (u) ∈ L2(c, d) and which satisfy the bound
ary conditions

u[1](c)= h0u(c), u[1](d)= h1u(d). (1.2)

If h0 = ∞ (respectively,h1 = ∞), then the corresponding boundary condition is regar
as a Dirichlet one, i.e., asu(c)= 0 (respectively, asu(d)= 0).

It is known [20] that so defined operatorT is closed and has nonempty resolvent
Moreover, sincelσ (u)= −u′′ + σ ′u in the sense of distributions,T is a Sturm–Liouville
operator with singular potentialq = σ ′ ∈ W−1

2 (0,1). We note that among the singul
potentials that can be treated by thisregularizationmethod are, e.g., the Diracδ-potentials
and the Coulomb 1/x-like potentials that have been widely used in quantum mecha
and mathematical physics; see [1,2] for particulars and detailed reference lists.

In the following the functionσ will always be real-valued and the numbersh0, h1
will always belong toR̄ := R ∪ {∞}. Then the operatorT ([c, d], σ,h0, h1) is selfadjoint,
bounded below, and has simple discrete spectrum accumulating at+∞ [20]. The inverse
spectral problemis to reconstruct the operatorT ([c, d], σ,h0, h1) based on its spectra
data. Classical results of the inverse spectral theory [13,14,16] imply that in regula
ations (i.e., for locally integrable potentials) knowing only the spectrum is not suffic
there are many Sturm–Liouville operators with the given spectrum. The same conc
was drawn in [10] for the class of Sturm–Liouville operators (1.1)–(1.2) with singula
tentials fromW−1

2 (c, d). In the regular case the data allowing unique reconstructio
the potential are: the spectrum and the so-called norming constants [13,16], or two
(corresponding to Sturm–Liouville operators with the same potential but different bo
ary conditions) [13,14], or three spectra (one for the whole interval and the othe
two parts of it) [6,15], or the spectrum and half of the potential [3,5,9,18], or the spe
function [13], etc. In [10,11] the first two settings of the inverse spectral problem
completely investigated in the class of Sturm–Liouville operators (1.1)–(1.2) with s
lar potentials fromW−1

2 (c, d). Our aim here is to study the third of the above-mentio
settings, i.e., reconstruction by three spectra.

More exactly, we fix an arbitrary real-valued functionσ ∈ L2(0,1), an arbitrary num-
ber a ∈ (c, d), and a tripleh = (h,h0, h1) ∈ R̄

3 and denote by(λ2
n)n∈N, (λ2

0,n)n∈N,

and (λ2
1,n)n∈N the eigenvalues (in increasing order) of the operatorsT ([c, d], σ,h0, h1),

T ([c, a], σ,h0, h), andT ([a, d], σ,h,h1), respectively. Then we have a mapping

(σ, a,h) �→Λ := ((
λ2
n

)
,
(
λ2

0,n

)
,
(
λ2

1,n

))
, (1.3)

and a natural question arises whether this mapping is injective. Also, what is its range
a andh are fixed andσ runs throughL2(0,1)? Does there exist an efficient algorithm
recoveringσ , a, andh fromΛ?

Our interest in these questions is motivated by papers [6,15], were similar pro
were addressed. In particular, Gesztesy and Simon [6] considered the caseσ ∈W1

1 [0,1]
and found sufficient conditions on the three spectra inΛ guaranteeing uniqueness of t
potentialσ ′. Pivovarchik [15] presented an algorithm reconstructing the potential in
case whereσ belongs toW2

2 [0,1], a = 1/2, h = h1 = h2 = ∞, and all eigenvalues ar
pairwise distinct.
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Note that this inverse spectral problem admits the following mechanical interpret
Consider a vibrating string of unit length and suppose thatλn are its eigenfrequencies. No
we clamp the string at the pointx = a and determine the eigenfrequenciesλ0,n andλ1,n
of two parts. The problem is to determine the structure of the string (e.g., its mass de
from the available data.

To avoid technical complications, we restrict ourselves to the most interesting
our point of view) case wherec = 0, d = 1, andh= h1 = h2 = ∞; see [6] for discussion
of other boundary conditions in the regular case. We give an explicit description o
range of mapping (1.3) (i.e., solve the direct spectral problem), find the preimage
arbitrary pointΛ in the range (i.e., solve the inverse spectral problem), and give nece
and sufficient conditions under which this preimage consists of a single point (i.e.,
the inverse spectral problem admits a unique solution).

The paper is organized as follows. In Section 2 we give the necessary definition
formulate the main results. Some preliminaries are derived in Sections 3 and 4. I
tion 5 we solve the direct spectral problem, and in the last section solve the inverse s
problem.

2. Formulation of the main results

Throughout the paperH will stand for the Hilbert spaceL2(0,1) and σ will be an
arbitrary real-valued function fromH. As was mentioned in introduction, we shall on
consider the case of Dirichlet boundary conditions at the points 0, 1, anda, i.e., the case
whereh= h0 = h1 = ∞. Respectively, the above three operators are specified as

T = T (σ) := T ([0,1], σ,∞,∞)
,

T0 = T0(σ ) := T
([0, a], σ,∞,∞)

, (2.1)

T1 = T1(σ ) := T
([a,1], σ,∞,∞)

.

Observe thatT (σ + c)= T (σ) andTj (σ + c)= Tj (σ ) for anyc ∈ R, so that without loss

of generality we shall impose the restriction that
∫ 1

0 σ = 0. The operatorsT (σ) andTj (σ ),
j = 0,1, are selfadjoint and bounded below and hence become positive after ad
suitable constant to the potentialq := σ ′ (i.e., after adding toσ a suitable multiple of
(x − 1/2)). Since under such a transformation the spectra inΛ shift elementwise by the
same constant, we may only concentrate on the case where all three operators are

Denote byΣ+
0 the set of all real-valued functionsσ in H with zero mean value, fo

which the operatorT (σ) is positive. (Observe that the operatorsTj (σ ), j = 0,1, are
positive as soon as such isT (σ); this easily follows from the variation principle [17, Prop
sition XIII.15.4].) In what follows,σ will always stand for a generic element ofΣ+

0 .
Suppose therefore thatσ ∈Σ+

0 and denote by(λ2
n(σ ))n∈N and(λ2

j,n(σ ))n∈N, j = 0,1,
the eigenvalues of the operatorsT (σ) andTj (σ ), j = 0,1. According to the definition
ofΣ+

0 , all these eigenvalues (and the square roots of themλn(σ ) andλj,n(σ )) are positive;
they also are pairwise distinct within each of the sequences. Therefore we can (and
shall) arrange them in strictly increasing order. We shall often omit dependenceσ ,
especially when no ambiguity arises.
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It is known (see, e.g., [10,19,20]) that the eigenvaluesλ2
n = λ2

n(σ ) of the operatorT
obey the asymptotics

λn = πn+ an, n ∈ N, (2.2)

where(an) ∈ �2. It is easily seen that the operatorsT0(σ ) andT1(σ ) are similar to the
operatorsa−2T (σ−

a ) and(1− a)−2T (σ+
a ), respectively, where

σ−
a (x) := aσ(ax), x ∈ [0,1],
σ+
a (x) := (1− a)σ (a + (1− a)x), x ∈ [0,1].

This observation and (2.2) yield the following asymptotics of the eigenvaluesλ2
j,n:

λ0,n = πn
a

+ a0,n, λ1,n = πn

1− a + a1,n, n ∈ N, (2.3)

where (aj,n), j = 0,1, are some�2-sequences. In particular, the numbera ∈ (0,1) is
uniquely determined by the spectrum ofT0 or T1. There is no loss of generality in suppo
ing a known a priori, so that mapping (1.3) should more correctly be defined as follo

Σ+
0 � σ �→ l(σ ) :=Λ= ((

λ2
n

)
,
(
λ2

0,n

)
,
(
λ2

1,n

))
.

As we have shown, any elementΛ from the range ofl must obey asymptotics (2.2
and (2.3). However, there are other conditions that anyΛ in l(Σ+

0 ) must verify.
To begin with, if a numberλ2 belongs to two spectra inΛ, thenλ2 belongs to the third

spectrum as well. This is best seen by inspection of the corresponding eigenfunctio
Secondly, the spectra inΛ possess some interlacing property. To explain it, we de

by (µ2
n)n∈N the sequence obtained by combining the sequences(λ2

0,n) and(λ2
1,n) into one

and rearranging the union in increasing order; moreover, we repeat twice in(µ2
n) each

common element of(λ2
0,n) and(λ2

1,n). Symbolically, we shall denote this operation by�
and write(µ2

n) = (λ2
0,n) � (λ2

1,n). Observe that(µ2
n) is the sequence of eigenvalues (

peated according to multiplicity and arranged in increasing order) of the operatorT0 ⊕ T1.
Then [4, Sections IV.8.1, IV.10] the sequences(λ2

n) and(µ2
n) interlace, i.e.,λ1 < µ1 and

µn � λn+1 �µn+1 for all n ∈ N.
For any triple of strictly increasing real sequencesΛ = ((λ2

n), (λ
2
0,n), (λ

2
1,n)), we put

(µ2
n) := (λ2

0,n)� (λ2
1,n), denote byAΛ the set of alln ∈ N such thatµn = µn+1, and set

BΛ := N \AΛ. Then the combination of the above intersection and interlacing prope
implies that, for eachΛ in the range ofl, we haveµn = λn+1 = µn+1 if n ∈ AΛ and
µn < λn+1<µn+1 if n ∈BΛ.

The third, and last, restriction onΛ is somewhat technical, and we illustrate it first
the simplest casea = 1/2 under the assumption that the three spectra inΛ are pairwise
disjoint. Then the eigenvaluesλ2

2n, λ
2
0,n, andλ2

1,n are asymptotically (i.e., for largen) close

andλ2
2n lies between the other two, see Fig. 1. The third restriction states that the dis

|λ2n − λ0,n| and|λ1,n − λ2n| must be asymptotically equal. More exactly, the requirem
is that the sequence

λ2n − λ0,n

λ1,n − λ2n
− 1 (2.4)

belongs to�2.



630 R.O. Hryniv, Ya.V. Mykytyuk / J. Math. Anal. Appl. 284 (2003) 626–646

-

i-

ondi-
�

λ2n−1
�

λ0,n

�

λ2n
�

λ1,n

�

λ2n+1

Fig. 1.

For an arbitrarya ∈ (0,1) this can be reformulated as follows. Ifa is rational, i.e.,
if a = r/s for relatively prime naturalsr and s, then we putM(a) = sN and for every
k ∈M(a) setk′ = k′(k, a)= ak andk′′ = k′′(a, k)= (1 − a)k. If a is irrational, then we
put

M(a) := {
k ∈ N | ∃m ∈ N s.t. |ak−m|< a(1− a)/2}

and for everyk ∈M(a) we denote byk′ = k′(k, a) andk′′ = k′′(k, a) unique natural num
bers, for which

|ak− k′|< a(1− a)/2, ∣∣(1− a)k− k′′∣∣< a(1− a)/2.
It is easily seen that, in both cases,M(a)=M(1− a) andk′ + k′′ = k.

Fix k ∈M(a) large enough. It follows from definition that the numbersλ0,k′ andλ1,k′′
are close toλk and containλk in between; cf. the above special casea = 1/2, where
M(a)= 2N and(2n)′ = (2n)′′ = n for everyn ∈ N. Thus it is natural to expect that cond
tion like (2.4) should concern onlyk ∈M(a)∩BΛ.

After these preparations, we are in a position to give the following definition.

Definition 2.1. We denote byL the set of all triples((
λ2
n

)
,
(
λ2

0,n

)
,
(
λ2

1,n

))=:Λ
of strictly increasing sequences of positive numbers, which satisfy the following c
tions:

(1) The numbersλ2
n andλ2

j,n, j = 0,1, obey the asymptotics

λn = πn+ an, λ0,n = πn
a

+ a0,n, λ1,n = πn

1− a + a1,n, n ∈ N,

where the sequences(an), (a0,n), and(a1,n) belong to�2;
(2) With (µ2

n) := (λ2
0,1)� (λ2

1,n) we haveλ1<µ1 and

µn = λn+1 = µn+1, n ∈AΛ,
µn < λn+1<µn+1, n ∈ BΛ;

(3) The sequence(δk)k∈B ′
Λ

, whereB ′
Λ :=BΛ ∩M(a) and

δk = δk(Λ) := a(λk − λ0,k′)

(1− a)(λ1,k′′ − λk) − 1, k ∈B ′
Λ,

belongs to�2(B ′
Λ).

Our first result is as follows.
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0 ) of the mappingl coincides with the setL. A pointΛ ∈ L

has a unique preimageσ = l−1(Λ) ∈Σ+
0 if and only ifAΛ = ∅.

We note that for the case of a regular potentialq = σ ′ ∈ W1
2 (0,1) and a = 1/2 the

asymptotics of the spectra inΛ= l(σ ) refines to

λn = πn+ ã
n

+ bn
n2
, λ0,n = 2πn+ ã0

n
+ b0,n

n2
, λ1,n = 2πn+ ã1

n
+ b1,n

n2
,

n ∈ N,

where ã and ãj , j = 0,1, are real numbers such thatã0 + ã1 = ã and (bn), (bj,n) are
some�2-sequences. It easily follows that condition (3) of Definition 2.1 holds in this
automatically as soon as̃a0 �= ã1. Pivovarchik proved in [15] that, for an arbitrary tripleΛ
satisfying the above refined asymptotics withã0 �= ã1, assumption (2) of Definition 2.1
and the conditionAΛ = ∅, the inverse spectral problem has a unique solution, i.e., t
exists a unique potentialq = σ ′ ∈ L2[0,1] such thatl(σ )=Λ. Since such aΛ necessarily
falls into L as explained above, Theorem 2.2 extends the results of [15] to the cla
singular potentials fromW−1

2 (0,1). Observe also that there is an inconsistency in [
between the required asymptotics of the spectral data and the declared smoothnes
restored potentialq , while Theorem 2.2 gives explicit necessary and sufficient condit
for a tripleΛ to be the spectral data for someq ∈W−1

2 (0,1).
An example withA(Λ) �= ∅ where the uniqueness of solution to the inverse sp

tral problem by three spectra fails was constructed by Gesztesy and Simon in [6
authors conjectured therein that nonuniqueness should take place wheneverA(Λ) �= ∅.
Theorem 2.2 justifies this conjecture even in a more general setting.

We mention that an efficient algorithm was suggested in [15] for recovering th
tentialq from three spectra. Basically the approach consisted in reducing the prob
recovering the potential from the Dirichlet–Dirichlet and Dirichlet–Neumann spectra
then using the classical results of Marchenko [14].

Here, we also give an efficient reconstruction algorithm, but take a slightly differen
proach. Namely, we reduce the inverse spectral problem to recovering the potential
Dirichlet–Dirichlet spectrum and the sequence of so-called norming constants. The
problem for the case of Sturm–Liouville operators with singular potentials fromW−1

2 (0,1)
has been completely solved in our paper [10].

To formulate the corresponding result from [10] we need some definitions. For an
traryσ ∈Σ+

0 and nonzeroλ ∈ C, we denote byu(·, λ, σ ) a solution to equationlσ u= λ2u

satisfying the initial conditionsu(0)= 0 andu[1](0)= √
2λ. Thenφn := u(·, λn, σ ) is an

eigenfunction of the operatorT (σ) corresponding to the eigenvalueλ2
n, and we put

αn = αn(σ ) :=
1∫

0

∣∣φn(x)∣∣2 dx.
We denote byA the set of pairs{(λ2

n)n∈N, (αn)n∈N}, in which the numbersλn are positive,
strictly increase, and obey asymptotics (2.2), andαn are positive and̃αn := αn − 1 form
an�2-sequence. Any element ofA is naturally associated with�2-sequences(an) of (2.2)
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and(α̃n). In this way the setA is identified with a subset of the Hilbert space�2 × �2 and
thus becomes a topological space. The results of [10] easily imply the following state

Proposition 2.3. The mappinga :Σ+
0 → A, which maps a functionσ ∈Σ+

0 into the pair
{(λ2
n), (αn)}, with (λ2

n) being the spectrum ofT (σ) and (αn) the corresponding sequenc
of norming constants, is homeomorphic.

We shall show that the three spectra inΛ ∈ L determine the norming coefficientsαk
for k ∈ BΛ, while those fork ∈AΛ remain undefined. This observation explains why n
emptyAΛ leads to nonuniqueness of the solution of the inverse spectral problem.
exactly, we establish the following result.

Theorem 2.4. Suppose thatΛ ∈ L andAΛ �= ∅. For any sequence(θk)k∈AΛ belonging
to �2(AΛ) and satisfying the condition1 + θk > 0, k ∈AΛ, there exists a uniqueσ ∈Σ+

0
such thatl(σ )=Λ andαk(σ )= 1+ θk for all k ∈AΛ.

As a corollary, we get the following description of the setl−1(Λ).

Corollary 2.5. Suppose thatσ ∈Σ+
0 and putΛ := l(σ ). Then

l−1(Λ)= {
σ̃ ∈Σ+

0 | ∀n ∈ N, λ2
n(σ̃ )= λ2

n(σ ) and ∀k ∈BΛ, αk(σ̃ )= αk(σ )
}
.

(2.5)

Throughout the paper,u′ andu̇ will denote derivatives of a functionu with respect to
x andλ, respectively. Also, for a fixed functionσ ∈ H, the notationu[1] means the quas
derivativeu′ − σu of a functionu.

3. Preliminary results

In this section we shall recall some known facts and prove statements to be use
on.

Suppose thatσ ∈Σ+
0 ; we denote byT̂σ := T ([0,1], σ,∞) a Sturm–Liouville operator

− d
2

dx2 + σ ′

with the Dirichlet boundary condition at the pointx = 0. More exactly,T̂σ acts according
to the formula

T̂σ u= lσ (u) := −(u′ − σu)′ − σu′

on the domain

domT̂σ := {
u ∈W1

1 [0,1] | u[1] ∈W1
1 [0,1], lσ (u) ∈ H, u(0)= 0

}
.

In particular,T (σ) is a restriction ofT̂σ imposing the Dirichlet boundary condition at th
pointx = 1.
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One of the key results of [12] states that the pairT̂σ andT̂0 possesses thetransformation
operatorI +Kσ that performs similarity ofT̂σ and T̂0 and enjoys some nice propertie
Namely,Kσ is a Hilbert–Schmidt integral operator of Volterra type, i.e.,

(Kσu)(x)=
x∫

0

kσ (x, t)u(t) dt.

The kernelkσ of Kσ possesses the property that its cross-sectionsfx(·) := kσ (x, ·) belong
to H for everyx ∈ [0,1] and, moreover, the mappingx �→ fx is continuous from[0,1]
into H.

The relationT̂σ (I +Kσ )= (I +Kσ )T̂0 shows that any element of dom̂Tσ has the form
(I +Kσ)v, wherev is an arbitrary function fromW2

2 [0,1] with v(0)= 0. Some additiona
properties ofKσ imply that, foru= (I +Kσ )v with v as above,u[1](0)= v′(0).

For an arbitrary nonzeroλ ∈ C, we denote bys−(·, λ) = s−(·, λ, σ ) (s+(·, λ) =
s+(·, λ, σ )) a solution to the equationlσ (u)= λ2u satisfying the initial conditionsu(0)= 0
andu[1](0)= 1 (respectively, satisfying the terminal conditionsu(1)= 0 andu[1](1)= 1).
The above properties ofKσ imply that

s−(x,λ)= sinλx

λ
+

x∫
0

kσ (x, t)
sinλt

λ
dt. (3.1)

Changing the variablex to 1−x, we show existence of the transformation operatorI + K̂σ
for T̂σ andT̂0 connected with the pointx = 1 and possessing similar properties; in par
ular, the kernel̂kσ of K̂σ has the property that̂kσ (x, ·) ∈H for everyx ∈ [0,1] and

s+(x,λ)= sinλ(x − 1)

λ
+

1∫
x

k̂σ (x, t)
sinλ(t − 1)

λ
dt. (3.2)

According to the definition ofs±, we haves−(1, λn)= s+(0, λn)= 0 ands−(a,λ0,n)=
s+(a,λ1,n)= 0. Moreover, for each fixedx ∈ [0,1] the functionss−(x,λ) ands+(x,λ) are
even entire functions ofλ of orderx and 1− x, respectively, and thus are uniquely det
mined by their zeros. The corresponding representations can be derived from the fol
modification of Lemma 3.4.2 from [14], whose proof can be found in [11].

Proposition 3.1. For an entire functionf to admit the representation

f (λ)= sinλ

λ
+

1∫
0

f̂ (t)
sinλt

λ
dt (3.3)

with some functionf̂ ∈H, it is necessary and sufficient that

f (λ)=
∞∏
k=1

f 2
k − λ2

(πk)2
, (3.4)

wherefk = πk + f̃k , the sequence(f̃k) belongs to�2, and±fk are all the zeros off .
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Lemma 3.2. The following formulae hold:

s−(1, λ)=
∞∏
k=1

λ2
k − λ2

(πk)2
, s−(a,λ)= a

∞∏
k=1

λ2
0,k − λ2

(πk/a)2
,

s+(a,λ)= −(1− a)
∞∏
k=1

λ2
1,k − λ2

[πk/(1− a)]2 .

Proof. The formula fors−(1, λ) follows directly from (3.1) and Proposition 3.1. Puttin
ĝ(t) := akσ (a, at) ∈ H, we find that

s−(a,λ)
a

= sinaλ

aλ
+

1∫
0

ĝ(t)
sinaλt

aλ
dt =: g(aλ).

Therefore by Proposition 3.1 we have

g(µ)=
∞∏
k=1

g2
k −µ2

(πk)2
,

where±gk have the required asymptotics and are all the zeros ofg. It is easily seen tha
gk = aλ0,k, so that the representation fors−(a,λ) follows.

In the same manner we derive the formula fors+(a,λ), and the lemma is proved.✷
At various points we shall also use the following well-known result (see, e.g., [8]).

Proposition 3.3. Assume thatνk, k ∈ Z+, are pairwise distinct positive numbers such th
νk −πk→ 0 ask→ ∞. Then the systems{sinνkx}∞k=1 and{cosνkx}∞k=0 form Riesz base
ofL2(0,1).

We denote byS the set of all functionsu of the form (3.3) (or, which is the same due
Proposition 3.1, of the form (3.4)). The following simple statement will play an impo
role for establishing uniqueness of solutions to the inverse spectral problem, so we g
proof here.

Lemma 3.4. Suppose thata ∈ (0,1) and that a sequence(µn) of positive pairwise dis
tinct numbers obeys the asymptoticsµn = πn + o(1) as n→ ∞. If the functionsvj ,
j = 1, . . . ,4, belong toS and

v1(aµn)v2
(
(1− a)µn

)= v3(aµn)v4
(
(1− a)µn

)
for all n ∈ N, then

v1(aλ)v2
(
(1− a)λ)≡ v3(aλ)v4

(
(1− a)λ).

Proof. Put v(λ) := v1(aλ)v2((1 − a)λ) − v3(aλ)v4((1 − a)λ). Integration by parts in
integral representations (3.3) for the functionsvj , j = 1, . . . ,4, and subsequent simp
transformations yield the representations
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vj (λ)=
1∫

−1

exp(−iλt)fj (t) dt

with fj = χ[−1,1]/2+ gj , whereχ[−1,1] is the indicator of the interval[−1,1] andgj are
even functions from the Sobolev spaceW1

2 (R) such that suppgj ⊂ [−1,1]. We define

fj,b(x) := (1/b)fj (x/b)
for b ∈ (0,1) andx ∈ R and put

f := f1,a ∗ f2,1−a − f3,a ∗ f4,1−a,

where(φ ∗ψ)(x) := ∫
R
φ(x− t)ψ(t) dt is the convolution of functionsφ andψ . Then the

functionf is even, belongs toW1
2 (R), suppf ⊂ [−1,1], and

v(λ)=
1∫

−1

exp(−iλt)f (t) dt = −2

1∫
0

sinλt

λ
f ′(t) dt.

By assumption,

1∫
0

sin(µnt)f ′(t) dt = −1

2
µnv(µn)= 0

for all n ∈ N; since by Proposition 3.3 the system{sinµnt}n∈N is complete inH and
f ′ ∈ H, we getf ′ = 0. Thusv ≡ 0, and the lemma is proved.✷

4. Properties of the functions uΛ, u0,Λ, and u1,Λ

With an arbitraryΛ= ((λ2
n), (λ

2
0,n), (λ

2
1,n)) ∈ L, we shall associate entire functionsuΛ,

u0,Λ, andu1,Λ given by

uΛ(λ) :=
∞∏
k=1

λ2
k − λ2

(πk)2
, u0,Λ(λ) :=

∞∏
k=1

λ2
0,k − λ2

(πk/a)2
,

u1,Λ(λ) :=
∞∏
k=1

λ2
1,k − λ2

[πk/(1− a)]2 .
(4.1)

Observe that ifσ ∈Σ+
0 is such thatl(σ )=Λ, then these functions are related to solutio

s±(·, λ, σ ) of the equationlσ (u)= λu in the following way (see Lemma 3.2):

s−(1, λ, σ )= uΛ(λ), s−(a,λ,σ )= au0,Λ(λ),

s+(a,λ,σ )= −(1− a)u1,Λ(λ).
(4.2)

In this section, we shall establish some important properties of the functionsuΛ and
uj,Λ, j = 0,1, that will essentially be used in Section 5. We start with the following
lemmata.



636 R.O. Hryniv, Ya.V. Mykytyuk / J. Math. Anal. Appl. 284 (2003) 626–646

osi-

rs
s

Lemma 4.1. Suppose thatΛ ∈ L; then we have

(−1)nλnu̇Λ(λn)= 1+ dn > 0, n ∈ N, (4.3)

where(dn) ∈ �2.

Proof. The fact that the left-hand side of (4.3) is positive follows from (4.1). Prop
tion 3.1 and formula (3.3) imply that

λnu̇Λ(λn)= d

dλ

(
λuΛ(λ)

)∣∣∣∣
λ=λn

= cosλn +
1∫

0

t f̂ (t)cosλnt dt

for somef̂ ∈H. Now the statement easily follows from the asymptotics of the numbeλn
and the fact that by Proposition 3.3 the system{cosλnt}n∈N forms a Riesz basis of it
closed linear span inH. ✷
Lemma 4.2. Suppose thatΛ ∈ L and that sequences(ξj,k)k∈N, j = 0,1, of positive pair-
wise distinct numbers are such that

ξ0,k = πk
a

+ η0,k, ξ1,k = πk

1− a + η1,k, k ∈ N,

where(ηj,k) ∈ �2, j = 0,1. Then there exist�2-sequences(dj,k), j = 0,1, such that

(−1)kξ0,ku̇0,Λ(ξ0,k)= 1+ d0,k, (−1)kξ1,ku̇1,Λ(ξ1,k)= 1+ d1,k

for all k ∈ N.

Proof of this statement is similar to that of Lemma 4.1 and thus is omitted.
The principal result of this section is as follows.

Theorem 4.3. Suppose thata ∈ (0,1) is irrational andΛ ∈ L. Then for allk ∈M(a) (see
Definition2.1)we have

aπk u0,Λ(λk)

sin(aπk)
=
(
a

π

)2 λ2
0,k′ − λ2

k

(k′)2 − (ak)2(1+ c0,k), (4.4)

(1− a)πk u1,Λ(λk)

sin((1− a)πk) =
(

1− a
π

)2 λ2
1,k′′ − λ2

k

(k′′)2 − (1− a)2k2
(1+ c1,k), (4.5)

where(cj,k), j = 0,1, are some sequences from�2(M(a)).

The proof of this theorem is based on the next three lemmata.

Lemma 4.4. Assume thatx = (xn)∞n=1 is a sequence of complex numbers from�2 such that

|xn| � 1/2 for all n ∈ N and the series
∑∞
n=1 xn converges. PutG(t) := t expt ; then the

following inequality holds:∣∣∣∣∣1−
∞∏
n=1

(1+ xn)
∣∣∣∣∣�G

(∣∣∣∣∣
∞∑
n=1

xn

∣∣∣∣∣+
∞∑
n=1

|xn|2
)
.
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Proof. Taking the principal branch of the logarithm and using the inequality∣∣z− log(1+ z)∣∣� |z|2, |z| � 1

2
,

we find that∣∣∣∣∣
∞∑
n=1

xn −
∞∑
n=1

log(1+ xn)
∣∣∣∣∣�

∞∑
n=1

|xn|2,

and hence that∣∣∣∣∣log
∞∏
n=1

(1+ xn)
∣∣∣∣∣�

∣∣∣∣∣
∞∑
n=1

xn

∣∣∣∣∣+
∞∑
n=1

|xn|2.

Now, taking into account that|1 − expz| � |z|exp(|z|) = G(|z|) for all complexz, we
conclude that∣∣∣∣∣1−

∞∏
n=1

(1+ xn)
∣∣∣∣∣�G

(∣∣∣∣∣log
∞∏
n=1

(1+ xn)
∣∣∣∣∣
)

�G
(∣∣∣∣∣

∞∑
n=1

xn

∣∣∣∣∣+
∞∑
n=1

|xn|2
)

as claimed. ✷
Lemma 4.5. Suppose that(rn)n∈N is a sequence of positive numbers with|rn − n|< 1/2
for all n ∈ N. Then linear operatorsH± in �2 that act according to the formula

(H±f )(k)=
∑
n�=k

f (n)

n± rk , k ∈ N,

are continuous.

Proof. We denote byH±
0 the operators corresponding to the particular casern = n for

everyn ∈ N; then continuity of the Hilbert operators [7, Chapter 5] implies thatH±
0 are

continuous in�2. Now we find that

∣∣(H±f −H±
0 f

)
(k)
∣∣�∑

n�=k

|f (n)|
(n± k)2 �

(
2

∞∑
n=1

1

n2

)1/2(∑
n�=k

|f (n)|2
(n− k)2

)1/2

,

where we have used the inequality|y/(x + y)| � |1/x| holding for all realx andy with
|x| � 1 and |y| � 1/2, the Cauchy–Schwarz–Bunyakowski inequality and the estim∑
n�=k 1/(n± k)2 � 2

∑
1/n2. Henceforth,

∥∥(H±f −H±
0 f

)∥∥2 �
(

2
∞∑
n=1

1

n2

) ∞∑
k=1

∑
n�=k

|f (n)|2
(n− k)2

=
(

2
∞∑
n=1

1

n2

) ∞∑
n=1

∣∣f (n)∣∣2∑
k �=n

1

(n− k)2 �
(

2
∞∑
n=1

1

n2

)2

‖f ‖2 = π
4

9
‖f ‖2,

so that‖H± −H±
0 ‖ � π2/3, and the operatorsH± are continuous in�2. ✷
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Lemma 4.6. Suppose thata ∈ (0,1) and (ωn), (ω′
n) are �2-sequences. We put for ea

k ∈M(a) (see Section2 for definition),

b(n, k) :=
{
(n+ωn)2−(ak+ω′

k)
2

n2−(ak)2 − 1 if n ∈ N \ {k′},
0 if n= k′.

Then

∞∏
n=1

(
1+ b(n, k))= 1+ ck,

where(ck) ∈ �2(M(a)).

Proof. The lemma will be proved as soon as we establish the following properties o
numbersb(n, k):

(a) There existsk0 ∈ N such that|b(n, k)| � 1/2 for all n ∈ N and allk ∈M(a) larger
thank0;

(b)
∑
k∈M(a) |

∑∞
n=1 b(n, k)|2<∞;

(c)
∑
k∈M(a)

∑∞
n=1 |b(n, k)|2<∞.

In fact, if (a)–(c) are satisfied andC1 andC2 denote the sums in (b) and (c), respective
then, by Lemma 4.4, we have fork � k0,

|ck| �
(∣∣∣∣∣

∞∑
n=1

b(n, k)

∣∣∣∣∣+
∞∑
n=1

∣∣b(n, k)∣∣2
)

exp(
√
C1 +C2),

so that

∑
k∈M(a)
k�k0

|ck|2 � 2

[ ∑
k∈M(a)

∣∣∣∣∣
∞∑
n=1

b(n, k)

∣∣∣∣∣
2

+
∑
k∈M(a)

( ∞∑
n=1

∣∣b(n, k)∣∣2
)2]

× exp(2
√
C1 + 2C2)

� 2
(
C1 +C2

2

)
exp(2

√
C1 + 2C2).

For everyk ∈M(a) andn ∈ N \ {k′}, we put

b1(n, k) := 2nωn
n2 − (ak)2 , b2(n, k) := − 2akω′

k

n2 − (ak)2 ,

b3(n, k) := ω2
n

n2 − (ak)2 , b4(n, k) := − (ω′
k)

2

n2 − (ak)2 ,

and letbj (k′, k)= 0, j = 1,2,3,4. It is easily seen that

b(n, k)= b1(n, k)+ b2(n, k)+ b3(n, k)+ b4(n, k), n ∈ N, k ∈M(a),
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and therefore it suffices to establish the above properties (a)–(c) for the numbersbj (n, k),
j = 1,2,3,4 (with the bound 1/2 in (a) replaced with 1/8). Actually, instead of (a) we
shall establish a stronger property

(a′) supn∈N |bj (n, k)| → 0 ask ∈M(a) tends to∞.

To begin with, we recall that, by definition,|n− ak| � 1/s if n �= k′ anda = r/s with
relatively primer and s and that|n − ak| � a(1 − a)/2 if n �= k′ and a is irrational;
henceforth,

sup
k∈M(a)

∑
n�=k′

1

|n2 − (ak)2| <∞, sup
n∈N

∑
k∈M(a)
k′ �=n

1

|n2 − (ak)2| <∞.

For j = 3 andj = 4 this observation implies that
∑
k∈M(a)

∑
n∈N

|bj (n, k)| <∞, and
thus (a′), (b), and (c) hold.

For j = 1, we easily derive (a′) from the representation

b1(n, k)= ωn

n− ak + ωn

n+ ak , n ∈ N \ {k′}.
Also notice that(ak)k∈M(a) is a subsequence of some sequence(rm)m∈N satisfying the
assumptions of Lemma 4.5. Therefore by Lemma 4.5 we conclude that the sequence(d±

k ),
with

d±
k :=

∑
n�=k′

ωn

n± ak ,

belong to�2(M(a)) so that (b) is satisfied. Property (c) follows from the fact that

∑
k∈M(a)

∑
n�=k′

|ωn|2
|n± ak|2 �

(
max
n∈N

∑
k∈M(a)
k′ �=n

1

|n± ak|2
)∑
n∈N

|ωn|2<∞.

Finally, for j = 2 the inequality|b2(n, k)| � 2|ω′
k|/|n− ak| justifies property (a′). In a

similar way we show that

∑
n�=k′

∣∣∣∣ 2ak

n2 − (ak)2
∣∣∣∣
2

�
∑
n�=k′

4

(n− ak)2 � C

for someC > 0 independent ofk, and thus (c) holds. Property (b) follows from the
equality below, in which, fork ∈M(a), we have puts := |k′ − ak| and used the bound
s < 1/8 andak > 7/8,∣∣∣∣∑

n�=k′
2ak

n2 − (ak)2
∣∣∣∣� ∑

n�2ak

2ak

n2 − (ak)2 +
∑
n<2ak
n�=k′

1

n+ ak +
∣∣∣∣ ∑
n<2ak
n�=k′

1

n− ak
∣∣∣∣

<
∑ 8ak

3n2
+ 2+

[
k′−1∑(

1

n− s − 1

n+ s
)

+ 1

k′ − s

]

n�2ak n=1



640 R.O. Hryniv, Ya.V. Mykytyuk / J. Math. Anal. Appl. 284 (2003) 626–646

the

om

ectral

f

uville
ee,

-
r

<
8ak

3(2ak− 1)
+ 2+ 1

1− s <
28

9
+ 2+ 8

7
< 7.

The lemma is proved. ✷
Proof of Theorem 4.3. Due to the symmetry betweenM(a) andM(1 − a) (see Sec-
tion 2), it suffices to prove only relation (4.4). Taking into account the definition of
functionu0,Λ and the equality

sin(aπk)

aπk
=

∞∏
n=1

(πn)2 − (aπk)2
(πn)2

,

we find that, for allk ∈M(a),
(aπk)u0,Λ(λk)

sin(aπk)
=

∞∏
n=1

(
a

π

)2 λ2
0,n − λ2

k

n2 − (ak)2 .

Hence the theorem will be proved as soon as we establish the relation

∏
n�=k′

(
a

π

)2 λ2
0,n − λ2

k

n2 − (ak)2 = 1+ c0,k, k ∈M(a), (4.6)

for some sequence(c0,k) ∈ �2(M(a)).
Observe that, according to (2.2) and (2.3), we have(

a

π

)2(
λ2

0,n − λ2
k

)= (n+ωn)2 − (ak+ω′
k)

2,

where (ωn) and (ω′
n) are some�2-sequences. Thus representation (4.6) follows fr

Lemma 4.6, and the proof is complete.✷

5. The direct spectral problem

In this section we shall study the direct spectral problem, i.e., shall study the sp
properties of the operatorsT (σ) andTj (σ ), j = 0,1, for σ ∈Σ+

0 . Our aim is to prove the
next statement.

Theorem 5.1. Suppose thatσ ∈Σ+
0 ; then the tripleΛ := l(σ ) belongs to the setL.

In order to prove the theorem, we need only show thatΛ verifies conditions (1)–(3) o
Definition 2.1.

As we have already mentioned, the eigenvalue asymptotics for the Sturm–Lio
operators with singular potentials fromW−1

2 (0,1) is established in several papers (s
e.g., [19,20] and also [10]). Thus the sequences(λ2

n) and(λ2
j,n) of Λ satisfy condition (1).

The interlacing properties of the sequences(λ2
n) and(µ2

n) := (λ2
0,1)� (λ2

1,n) (i.e., the

inequalitiesλ2
1 < µ

2
1 andµ2

n � λ2
n+1 � µ2

n+1 for all n ∈ N) is proved, e.g., in [4, Sec
tion IV.8.1]. Also, among each tripleµ2

n, λ
2 , andµ2 , n ∈ N, all numbers are eithe
n+1 n+1
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pairwise distinct or all equal. Indeed, if, e.g.,µ2
n = λ2

n+1 andun+1 is the correspondin
eigenfunction ofT , thenun+1(a) = 0 and the restrictions ofun+1 onto [0, a] and [a,1]
give eigenfunctions ofT0 andT1; thus alsoµ2

n+1 = λ2
n+1. These reasonings establish (2

It remains to verify condition (3). We shall do this in the following way: first deriv
representation of the norming constantsαn(σ ) for the operatorT (σ) via Λ and then use
this representation and the asymptotic behaviour ofαn(σ ) to establish (3).

Lemma 5.2. Suppose thatσ ∈Σ+
0 and putαn := αn(σ ) ands±(·, λ) := s±(·, λ, σ ); then

for all n ∈ N we have

αns+(·, λn)= λnṡ−(1, λn)s−(·, λn). (5.1)

Proof. Recall thatφn := √
2λns−(·, λn) is an eigenfunction of the operatorT = T (σ)

corresponding to the eigenvalueλ2
n and thatαn := ‖φn‖2. Therefore the Green’s functio

of the operatorT equals

G(x,y,λ2)=
∞∑
n=1

φn(x)φn(y)

αn(λ2
n − λ2)

, x, y ∈ [0,1].

On the other hand, we have

G(x,y,λ2)= 1

W(λ)

{
s−(x,λ)s+(y,λ) if 0 � x � y � 1,
s+(x,λ)s−(y,λ) if 0 � y � x � 1,

whereW(λ) := s[1]
− (x,λ)s+(x,λ) − s[1]

+ (x,λ)s−(x,λ) is the Wronskian of the solution
s+(·, λ) ands−(·, λ). The value ofW(λ) is independent ofx; in particular, takingx = 1
we getW(λ)= −s−(1, λ). Combining the above equalities and puttingx = y, we arrive at
the identity

∞∑
n=1

2λ2
ns

2−(y,λn)
αn(λ2

n − λ2)
≡ − s−(y,λ)s+(y,λ)

s−(1, λ)
.

Formula (5.1) follows now after equating the residues of both sides of this identity
polesλ= λn. ✷

If n ∈ BΛ, thens±(a,λn) �= 0, so that we can takex = a in equality (5.1), divide both
its sides bys+(a,λn), and then expresss±(a,λn) in terms ofuj,Λ as in (4.2). This result
in the following statement.

Corollary 5.3. Suppose thatσ ∈Σ+
0 andΛ= l(σ ); then forn ∈ BΛ it holds

αn(σ )= −λnu̇Λ(λn) au0,Λ(λn)

(1− a)u1,Λ(λn)
. (5.2)

It is proved in [10] that the norming constants(αn) have the representationαn = 1+ α̃n
with (α̃n) ∈ �2. Thus the right-hand side of (5.2) obeys the same asymptotics, an
shall show next that this asymptotics implies condition (3) of Definition 2.1. The cr
observation is contained in the next statement.
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Lemma 5.4. Condition(3) in Definition2.1of the setL is equivalent to the following one:

(3′) The sequence(γn)n∈BΛ , where

γn = γn(Λ) := (−1)n+1 au0,Λ(λn)

(1− a)u1,Λ(λn)
− 1, n ∈ BΛ,

belongs to�2(BΛ).

Assuming for the time being that Lemma 5.4 is already proved, we argue as follow
Lemma 4.1 we have the relation

(−1)nλnu̇Λ(λn)= 1+ dn
with some�2-sequence(dn); henceforth equality (5.2) for alln ∈ BΛ can be recast as

1+ α̃n = (1+ dn)(1+ γn), (5.3)

and this representation easily yields the inclusion(γn)n∈BΛ ∈ �2(BΛ). Thus condition (3′)
holds, and by Lemma 5.4 also condition (3) takes place.

To sum up, taking for granted Lemma 5.4, we have shown thatΛ ∈ L and thus finished
the proof of Theorem 5.1.

It remains to establish Lemma 5.4.

Proof of Lemma 5.4. Suppose that a tripleΛ= ((λ2
n), (λ

2
0,n), (λ

2
1,n)) of strictly increasing

sequences of positive numbers satisfies conditions (1) and (2) of Definition 2.1. We
show thatΛ satisfies condition (3) of this definition if and only if (3′) above is verified.

We recall that by definitionB ′
Λ = BΛ ∩M(a) and putB ′′

Λ := BΛ \M(a). Our first step
is to show that the sequence(γn)n∈B ′′

Λ
always belongs to�2(B ′′

Λ).
Observe that, for anyk ∈B ′′

Λ we have

1+ γk = (−1)k+1 au0,Λ(λk)

(1− a)u1,Λ(λk)
= aλk u0,Λ(λk)

sin(aπk)

sin((1− a)πk)
(1− a)λk u1,Λ(λk)

. (5.4)

It follows from (3.1), (3.2), and (4.2) that

aλk u0,Λ(λk)

sin(aπk)
= sin(aλk)

sin(aπk)
+ 1

sin(aπk)

a∫
0

f0(t)sin(λkt) dt,

(1− a)λk u1,Λ(λk)

sin((1− a)πk) = sin((1− a)λk)
sin((1− a)πk) + 1

sin((1− a)πk)
1−a∫
0

f1(t)sin(λkt) dt,

wheref0, f1 ∈ H. Since by Proposition 3.3 the system{sinλkt}k∈N forms a Riesz basi
of H, the sequences(c0,k) and(c1,k) with

c0,k :=
a∫
f0(t)sinλkt dt, c1,k :=

1−a∫
f1(t)sinλkt dt
0 0
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sts a

ment.
belong to�2. Also, by the definition of the setM(a),

sup
k∈N\M(a)

1
/∣∣sin(aπk)

∣∣= sup
k∈N\M(a)

1
/∣∣sin

(
(1− a)πk)∣∣<∞,

so that
sin(aλk)

sin(aπk)
= 1+O(ak) and

sin((1− a)λk)
sin((1− a)πk) = 1+O(ak), k ∈ N \M(a),

with (ak) ∈ �2 being the sequence of (2.2). Thus we have shown that

1+ γk = 1+ c′k
1+ c′′k

, k ∈ B ′′
Λ,

where(c′k), (c′′k ) ∈ �2(B ′′
Λ), and the claim follows.

The second step is to show that, under the assumptions imposed onΛ, conditions(γk) ∈
�2(B

′
Λ) and(δk) ∈ �2(B ′

Λ) are equivalent. To this end it suffices to prove that there exi
sequence(εk) ∈ �2(B ′

Λ) such that the following equality holds for allk ∈B ′
Λ:

1+ γk = (1+ δk)(1+ εk). (5.5)

Suppose thata is irrational. Then, due to equality (5.4) and Theorem 4.3 we have

1+ γk =
(
a

1− a
)2 λ2

0,k′ − λ2
k

(k′)2 − (ak)2
(k′′)2 − (1− a)2k2

λ2
1,k′′ − λ2

k

(1+ ck), k ∈B ′
Λ, (5.6)

where(ck) ∈ �2(B ′
Λ). Asymptotics of the sequences(λk), (λ0,k′), and(λ1,k′′) implies that

λ0,k′ + λk
λ1,k′′ + λk = 1+O(1/k), k ∈M(a).

Moreover,k′ − ak = −k′′ + (1− a)k and

a(k′′ + (1− a)k)
(1− a)(k′ + ak) = 1+O(1/k), k ∈M(a).

Combining this relation into (5.6), we easily derive (5.5) for some(εk) ∈ �2(B ′
Λ).

Assume now thata is rational. Then for anyk ∈B ′
Λ we find that

1+ γk = (−1)k+1 au0,Λ(λk)

(1− a)u1,Λ(λk)
= (−1)k+1 au̇0,Λ(λ̃0,k′)(λk − λ0,k′)

(1− a)u̇1,Λ(λ̃1,k′′)(λk − λ1,k′′)
,

where λ̃0,k′ (respectively,λ̃1,k′′ ) are some numbers betweenλk and λ0,k′ (respectively,
betweenλk andλ1,k′′ ). In particular, if the setB ′

Λ is infinite, then the numbers̃λ0,k′ and
λ̃1,k′′ have the asymptotics

λ̃0,k′ = πk′/a + η0,k, λ̃1,k′′ = πk′′/(1− a)+ η1,k, k ∈B ′
Λ,

for some�2(B ′
Λ)-sequences(ηj,k), j = 0,1. Since fork ∈M(a) we have

πk = πk′/a = πk′′/(1− a) and k′ + k′′ = k,
representation (5.5) easily follows from Lemma 4.2. The lemma is proved.✷

Using formula (5.3), Lemmata 4.1 and 5.4, we can easily prove the following state
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Corollary 5.5. Assume thatΛ ∈ L is arbitrary and construct the numbersαn for n ∈ BΛ
according to(5.2); then the sequence(αn − 1)n∈BΛ belongs to�2(BΛ).

6. The inverse spectral problem: Proof of the main results

In this section, we shall solve the inverse spectral problem. In other words, we
show how a potentialσ ∈Σ+

0 can be recovered via the spectral dataΛ= l(σ ) and prove
that any tripleΛ in L is the spectral data corresponding to someσ ∈ Σ+

0 , i.e., thatL =
l(Σ+

0 ). Since the procedure is the same for both parts, we shall treat only the secon
which is more general.

Assume therefore thatΛ = ((λ2
n), (λ

2
0,n), (λ

2
1,n)) ∈ L. We construct the correspondin

functionsuΛ anduj,Λ, j = 0,1, as explained in Section 4 and, for everyk ∈ BΛ, we define
a numberαk through formula (5.2). According to the results of the previous section
Corollary 5.5), the sequence(αk − 1)k∈BΛ belongs to�2(BΛ). If AΛ �= ∅, then we take an
arbitrary sequence(θk)k∈AΛ from �2(AΛ) obeying the inequalityθk >−1 for all k ∈ AΛ
and putαk := 1+ θk , k ∈AΛ.

The sequence(αn)n∈N so constructed consists of positive numbers and satisfie
asymptotic relationαn = 1 + α̃n with an �2-sequence(α̃n). The pairS := {(λ2

k), (αk)}
belongs toA and thus we can use Proposition 2.3 and the reconstruction algorithm o
to find a uniqueσ ∈Σ+

0 such thata(σ )= S, i.e., such thatλ2
n(σ )= λ2

n andαn(σ )= αn for
all n ∈ N.

It remains to prove that the functionσ so defined satisfies the equalityl(σ ) = Λ, i.e.,
that(λ2

j,n) are the spectra of the operatorsTj (σ ), j = 0,1.

To this end we writeΛ̃ := l(σ ) and denote bỹλ2
j,n := λ2

j,n(σ ), j = 0,1, the spectra
of Tj (σ ) and byuj,Λ̃ the corresponding entire functions. It follows from Lemma 5.2
formula (4.2) that

αn(σ )(1− a)u1,Λ̃(λn)= −λnu̇Λ(λn)au0,Λ̃(λn);
recalling the definition ofαn, we derive from this the equalities

u0,Λ(λn)u1,Λ̃(λn)= u0,Λ̃(λn)u1,Λ(λn) (6.1)

for all n ∈ BΛ. Sinceu0,Λ(λn)= u1,Λ(λn)= 0 for all n ∈AΛ, equalities (6.1) hold for al
n ∈ N. We apply now Lemma 3.4 and conclude that

u0,Λu1,Λ̃ ≡ u0,Λ̃u1,Λ.

The above identity implies the following property:

(∗) The functionsuj,Λ anduj,Λ̃, j = 0,1, have the same zeros outside the set{λn}n∈N.

Observe that the triplesΛ andΛ̃ belong toL (the former by assumption and the latter
Theorem 5.1) and thus they enjoy property (2) of Definition 2.1. Put(µ2

n) := (λ2
0,n)�(λ2

1,n)

and (µ̃2
n) := (λ̃2 ) � (λ̃2 ); then, in view of (∗) and property (2) of Definition 2.1, th
0,n 1,n
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equalityΛ= Λ̃ holds if and only if the sequences(µ2
n) and(µ̃2

n) coincide, i.e., if and only
if identically equal are the counting functions

r(t) := #{n ∈ N | µn � t}, r̃(t) := #{n ∈ N | µ̃n � t}, t ∈ R.

We obviously haver(t)= r̃(t) = 0 for t ∈ (−∞, λ1]. Assume that the equalityr(t) =
r̃(t) is already proved fort ∈ (−∞, λn] for somen ∈ N. If r(λn)= r̃(λn)= n, then prop-
erty (2) of Definition 2.1 yields the relationsµn = µ̃n = λn, µn+1 > λn+1, µ̃n+1 > λn+1
and hencer(t) = r̃(t) = n for all t ∈ (λn,λn+1]. Otherwiser(λn) = r̃(λn) = n − 1, and
then either (i)µn ∈ (λn,λn+1) or (ii) µn = λn+1. In case (i) we see that̃µn = µn due to
property (∗) andµn+1 > λn+1 and µ̃n+1 > λn+1 due to property (2) of Definition 2.1
as a result,r(t) = r̃(t) for t ∈ (λn,λn+1]. In case (ii), again by (∗) and property (2) of
Definition 2.1, we havẽµn = µn = λn+1 = µn+1 = µ̃n+1, and thusr(t) = r̃(t) for all
t ∈ (λn,λn+1]. The induction inn establishes now the identityr ≡ r̃ ; henceforth we have
shown thatΛ̃=Λ, and the reconstruction procedure is complete.

We are now in a position to prove Theorems 2.2 and 2.4 and Corollary 2.5.

Proof of Theorems 2.2, 2.4, and Corollary 2.5. The inclusionl(Σ+
0 )⊂ L is justified by

Theorem 5.1, while the above reconstruction algorithm states thatL ⊂ l(Σ+
0 ). Therefore

the mappingl :Σ+
0 → L is surjective as claimed by Theorem 2.2.

Suppose thatσ ∈Σ+
0 andσ̃ ∈Σ+

0 satisfy the relationsl(σ )= l(σ̃ )=:Λ andαk(σ )=
αk(σ̃ ) for k ∈AΛ. Then in view of Corollary 5.3 we also haveαk(σ )= αk(σ̃ ) for k ∈BΛ.
Thusa(σ )= a(σ̃ ) and henceσ = σ̃ by Proposition 2.3. This proves uniqueness statem
of Theorems 2.2 and 2.4, while existence is demonstrated by the above reconst
algorithm.

To prove Corollary 2.5, we denote the right-hand side of (2.5) byΣ(Λ). For anyσ̃ ∈
l−1(Λ) the valuesαk(σ̃ ) of the norming constants fork ∈ BΛ are prescribed byΛ by
Corollary 5.3 (in particular,αk(σ̃ )= αk(σ )), so that the inclusionl−1(Λ)⊂Σ(Λ) holds.

To justify the reverse inclusion, we take an arbitraryσ̃ ∈ Σ(Λ); then the sequenc
(αk(σ̃ ))k∈AΛ has the form as required in Theorem 2.4 and hence there exists a u
σ̂ ∈Σ+

0 such thatl(σ̂ ) = Λ andαk(σ̂ ) = αk(σ̃ ) for k ∈ AΛ. Again by Corollary 5.3 we
have thatαk(σ̂ ) = αk(σ ) for k ∈ BΛ and thus alsoαk(σ̂ ) = αk(σ̃ ) for k ∈ BΛ. Proposi-
tion 2.3 now implies that̂σ = σ̃ ; henceforthσ̃ ∈ l−1(Λ), and the proof is complete.✷
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