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Abstract

We solve the inverse spectral problem of recovering the singular potential wgﬁro, 1) of
a Sturm-Liouville operator by its spectra on the three interi@l4], [0, «], and[a, 1] for some
a € (0,1). Necessary and sufficient conditions on the spectral data are derived, and uniqueness of the
solution is analyzed.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose that a functieanbelongs td.2(0, 1), thatc andd, ¢ < d, are real numbers from
the intervall0, 1], and assume th&p andh; are arbitrary elements of the extended com-
plex planeC := C U {oo}. We denote byl' = T'([c, d], 0, ho, h1) an operator inLs(c, d)
that acts according to the formula

Tu=Ils;(u):=—w —ou) —ou’ (1.1)
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on the domain dorfi consisting of functions: Wll[c,d] with absolutely continuous
quasi-derivative/*! := u’ — ou, for whichl, (1) € La(c, d) and which satisfy the bound-
ary conditions

uM () = hou(o), uM(d) = hu(d). (1.2)

If ho = oo (respectivelyh; = 00), then the corresponding boundary condition is regarded
as a Dirichlet one, i.e., ag(c) = O (respectively, ag(d) = 0).

It is known [20] that so defined operat®ris closed and has honempty resolvent set.
Moreover, sincé, (1) = —u” + o’u in the sense of distributiong; is a Sturm—Liouville
operator with singular potential = o’ € Wz‘l(o, 1). We note that among the singular
potentials that can be treated by tregularizationmethod are, e.g., the Dirdepotentials
and the Coulomb /Mx-like potentials that have been widely used in quantum mechanics
and mathematical physics; see [1,2] for particulars and detailed reference lists.

In the following the functiono will always be real-valued and the numbeérs /1
will always belong toR := R U {oo}. Then the operatdf ([c, d], o, ho, h1) is selfadjoint,
bounded below, and has simple discrete spectrum accumulatingeafi20]. Theinverse
spectral problemis to reconstruct the operatdi([c, d], o, ho, h1) based on its spectral
data. Classical results of the inverse spectral theory [13,14,16] imply that in regular situ-
ations (i.e., for locally integrable potentials) knowing only the spectrum is not sufficient:
there are many Sturm—Liouville operators with the given spectrum. The same conclusion
was drawn in [10] for the class of Sturm—Liouville operators (1.1)—(1.2) with singular po-
tentials frongl(c, d). In the regular case the data allowing unigue reconstruction of
the potential are: the spectrum and the so-called norming constants [13,16], or two spectra
(corresponding to Sturm—Liouville operators with the same potential but different bound-
ary conditions) [13,14], or three spectra (one for the whole interval and the others for
two parts of it) [6,15], or the spectrum and half of the potential [3,5,9,18], or the spectral
function [13], etc. In [10,11] the first two settings of the inverse spectral problem were
completely investigated in the class of Sturm-Liouville operators (1.1)—(1.2) with singu-
lar potentials fromW{l(c, d). Our aim here is to study the third of the above-mentioned
settings, i.e., reconstruction by three spectra.

More exactly, we fix an arbitrary real-valued functiens L>(0, 1), an arbitrary num-
bera € (c,d), and a tripleh = (h, ho, h1) € R® and denote by(A2),en, (A3, )nen,

and ()Lin),,eN the eigenvalues (in increasing order) of the operafuis, d1, o, ho, h1),
T ([c,al, 0, ho, h), andT ([a, d], 0, h, h1), respectively. Then we have a mapping

(0,a,h) > A= (()‘5)’ ()“(2),11)’ ()‘in))’ (13)

and a natural question arises whether this mapping is injective. Also, what is its range when
a andh are fixed andr runs throughl.>(0, 1)? Does there exist an efficient algorithm of
recovering, a, andh from A?

Our interest in these questions is motivated by papers [6,15], were similar problems
were addressed. In particular, Gesztesy and Simon [6] considered the eaW%[O, 1]
and found sufficient conditions on the three spectraliguaranteeing uniqueness of the
potentialo’. Pivovarchik [15] presented an algorithm reconstructing the potential in the
case wherer belongs toWZZ[O, 11, a=1/2, h = h1 = hp = 00, and all eigenvalues are
pairwise distinct.
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Note that this inverse spectral problem admits the following mechanical interpretation.
Consider a vibrating string of unit length and supposethaire its eigenfrequencies. Now
we clamp the string at the point= a and determine the eigenfrequencigs, andi1 ,
of two parts. The problem is to determine the structure of the string (e.g., its mass density)
from the available data.

To avoid technical complications, we restrict ourselves to the most interesting (from
our point of view) case where=0,d = 1, andh = h1 = hp = co; see [6] for discussion
of other boundary conditions in the regular case. We give an explicit description of the
range of mapping (1.3) (i.e., solve the direct spectral problem), find the preimage of an
arbitrary pointA in the range (i.e., solve the inverse spectral problem), and give necessary
and sufficient conditions under which this preimage consists of a single point (i.e., when
the inverse spectral problem admits a unique solution).

The paper is organized as follows. In Section 2 we give the necessary definitions and
formulate the main results. Some preliminaries are derived in Sections 3 and 4. In Sec-
tion 5 we solve the direct spectral problem, and in the last section solve the inverse spectral
problem.

2. Formulation of themain results

Throughout the papek will stand for the Hilbert spacé.»(0,1) ando will be an
arbitrary real-valued function frori. As was mentioned in introduction, we shall only
consider the case of Dirichlet boundary conditions at the points 0, 1¢ ainel, the case
whereh = hg = h1 = co. Respectively, the above three operators are specified as

T =T(o):=T([0,1],0,00,00),
To=To(o) :=T([0,al, o, 00, 00), (2.1)
T1=Ti(o) :=T([a, 1], 0, 00, 00).

Observe thal (o + ¢) = T(c) andT; (o +¢) =T;(o) for anyc € R, so that without loss

of generality we shall impose the restriction t[féta = 0. The operatorg (o) and7; (o),
j =0,1, are selfadjoint and bounded below and hence become positive after adding a
suitable constant to the potentigl:= ¢’ (i.e., after adding tar a suitable multiple of
(x — 1/2)). Since under such a transformation the spectrd ishift elementwise by the
same constant, we may only concentrate on the case where all three operators are positive.
Denote by):ér the set of all real-valued functions in H with zero mean value, for
which the operatof (o) is positive. (Observe that the operatd@sc), j = 0,1, are
positive as soon as suchfigo); this easily follows from the variation principle [17, Propo-
sition Xl11.15.4].) In what follows,c will always stand for a generic elementﬁ‘g.
Suppose therefore thate X and denote byA2(0)),en and()ﬁ_n(a))neN, j=0,1,
the eigenvalues of the operatdf¢c) andT;(c), j =0, 1. According to the definition
of Zar , all these eigenvalues (and the square roots of thgie) andA ; ,, (o)) are positive;
they also are pairwise distinct within each of the sequences. Therefore we can (and always
shall) arrange them in strictly increasing order. We shall often omit dependenge on
especially when no ambiguity arises.
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It is known (see, e.g., [10,19,20]) that the eigenvalugs- A2(c) of the operatol
obey the asymptotics

M =nmn+a,, neN, (2.2)

where (a,) € £3. It is easily seen that the operatdfg(oc) and T1(o) are similar to the
operators: 2T (o) and(1 — a) 2T (o,}), respectively, where

o, (x):=ao(ax), xe€l0,1],
craJr(x) =(1- a)cr(a + (- a)x), x €[0,1].
This observation and (2.2) yield the following asymptotics of the eigenvaJﬁlgs

mn
l-a
where (a;,), j = 0,1, are somelz-sequences. In particular, the numbee (0, 1) is
uniquely determined by the spectrum®for T1. There is no loss of generality in suppos-
ing « known a priori, so that mapping (1.3) should more correctly be defined as follows:
28_ 50— [(0) =A= (()”5)’ ()”(2),/1)’ ()”in))'

As we have shown, any element from the range of must obey asymptotics (2.2)
and (2.3). However, there are other conditions that.ang [()35r ) must verify.

To begin with, if a numbek? belongs to two spectra irt, theni? belongs to the third
spectrum as well. This is best seen by inspection of the corresponding eigenfunctions.

Secondly, the spectra in possess some interlacing property. To explain it, we denote
by (115)nen the sequence obtained by combining the sequeiggs and(22 ) into one
and rearranging the union in increasing order; moreover, we repeat twi(qz%)’neach
common element 0¢A(2)_n) and(kf_n). Symbolically, we shall denote this operation Hy
and write (42) = (A3 ) L1 (A% ). Observe thatu?2) is the sequence of eigenvalues (re-
peated according to multiplicity and arranged in increasing order) of the op&pao¥ .

Then [4, Sections 1V.8.1, IV.10] the sequencg$) and (12) interlace, i.e.A1 < u1 and
Un < Apt1 < ups1 foralln e N.

For any triple of strictly increasing real sequences= ((A2), (A3 ,). (A1), we put
(12):= (23,) LI (A3 ), denote byA » the set of alln € N such thatw, = w,+1, and set
B4 :=N\ A4. Then the combination of the above intersection and interlacing properties
implies that, for each in the range of, we haveu, = A,+1 = un4+1 if n € A4 and
Un < Apntl < ppt1if n e By.

The third, and last, restriction an is somewhat technical, and we illustrate it first for
the simplest case = 1/2 under the assumption that the three spectra iare pairwise
disjoint. Then the eigenvalueg , A3, andAf , are asymptotically (i.e., for large) close
and)én lies between the other two, see Fig. 1. The third restriction states that the distances
|A2n — Xo.n| @and|A1, — A2,| must be asymptotically equal. More exactly, the requirement
is that the sequence

mn
A0 = 7 +aon, Ain= +ai1,, ne N, (23)

Aop — A
Lo Z 0 g (2.4)
)Ll,n — A2

belongs tols.
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A2n—1 o _ Aot

)‘O.n )“1.,11

Fig. 1.

For an arbitrarya € (0, 1) this can be reformulated as follows. df is rational, i.e.,
if a =r/s for relatively prime naturals ands, then we putM (a) = sN and for every
ke M(a) setk’ =k'(k,a) =ak andk” =k"(a, k) = (1 — a)k. If a is irrational, then we
put

M(a) = {kEN | 3m € N s.t. |[ak — m]| <a(1—a)/2}

and for everyk € M (a) we denote by’ = k’(k, a) andk” = k" (k, a) unique natural num-
bers, for which

lak —k'| <a(l—a)/2, |A—a)k —k"| <a(l—a)/2.

It is easily seen that, in both cas@g(a) = M(1—a) andk’ + k" = k.

Fix k € M(a) large enough. It follows from definition that the numbggs andiy i~
are close tor, and containy; in between; cf. the above special case- 1/2, where
M (a) = 2N and(2n)' = (2n)" = n for everyn € N. Thus it is natural to expect that condi-
tion like (2.4) should concern onlye M(a) N B4.

After these preparations, we are in a position to give the following definition.

Definition 2.1. We denote byt the set of all triples

(), (48,0 (01,)) = 4

of strictly increasing sequences of positive numbers, which satisfy the following condi-
tions:

(1) The numberg?2 and? , j =0, 1, obey the asymptotics

jin

mn mn
Ap =T7n +ap, )\0,n=_+a0,nv )Ll,n:—l + a1 n, neN,
a

where the sequencés,), (ao.»), and(a1,,) belong tofy;
(2) With (u2) := (33 ) 1 (21 ,) we haver; < u1 and
Mn =Aptl = Upt1, NE A,
Mn <Aptl < ptl, N E By;
(3) The sequencey),cp,, WhereB), := B, N M(a) and

a(h g — Aox)
A —a)(ry i — Ak)

81(:8]((/‘) = —1, kEBfA,
belongs tal2(B/)).

Our first result is as follows.
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Theorem 2.2. The rangel(Xy ) of the mapping coincides with the se€. A pointA € £
has a unique preimage = ["1(4) € ¥ ifand only ifA 4 = 0.

We note that for the case of a regular potengiat o’ € Wzl(o, 1) anda = 1/2 the
asymptotics of the spectra ih = [(o) refines to

bO,n a bl,n

b ai
_n 2 )\l,n:27TH+_+ 2
n n n

i’lz’

a do
A=mn+—+ Ao =2Tn+ — +
n n

neN,

wherea anda;, j =0, 1, are real numbers such th@ + a1 = a and (b,), (b;,,) are
somelz-sequences. It easily follows that condition (3) of Definition 2.1 holds in this case
automatically as soon &g # aj. Pivovarchik proved in [15] that, for an arbitrary tripke
satisfying the above refined asymptotics wih a1, assumption (2) of Definition 2.1,

and the conditiom 4 = ¢, the inverse spectral problem has a unique solution, i.e., there
exists a unique potentigl= o’ € L,[0, 1] such that(c) = A. Since such a1 necessarily

falls into £ as explained above, Theorem 2.2 extends the results of [15] to the class of
singular potentials frontl(O, 1). Observe also that there is an inconsistency in [15]
between the required asymptotics of the spectral data and the declared smoothness of the
restored potentia}, while Theorem 2.2 gives explicit necessary and sufficient conditions
for a triple A to be the spectral data for sompes Wz‘l(o, 1).

An example withA(A) # @ where the uniqueness of solution to the inverse spec-
tral problem by three spectra fails was constructed by Gesztesy and Simon in [6]. The
authors conjectured therein that nonuniqueness should take place wharieveg .
Theorem 2.2 justifies this conjecture even in a more general setting.

We mention that an efficient algorithm was suggested in [15] for recovering the po-
tential g from three spectra. Basically the approach consisted in reducing the problem to
recovering the potential from the Dirichlet—Dirichlet and Dirichlet—-Neumann spectra and
then using the classical results of Marchenko [14].

Here, we also give an efficient reconstruction algorithm, but take a slightly different ap-
proach. Namely, we reduce the inverse spectral problem to recovering the potential by the
Dirichlet—Dirichlet spectrum and the sequence of so-called norming constants. The latter
problem for the case of Sturm—Liouville operators with singular potentials Wgrﬁ(o, 1)
has been completely solved in our paper [10].

To formulate the corresponding result from [10] we need some definitions. For an arbi-
traryo € X and nonzera. € C, we denote by:(-, 1, o) a solution to equatiofyu = A%u
satisfying the initial conditions (0) = 0 andu!¥(0) = v/21. Theng,, := u(:, A,, o) is an
eigenfunction of the operatdi(o) corresponding to the eigenvalug, and we put

1
ap =ap(0) = /|¢n(x)|2dx.
0

We denote byl the set of pair$(k,2,),,eN, (an)nent, in which the numbers,, are positive,
strictly increase, and obey asymptotics (2.2), apdare positive andy, := «,, — 1 form
an{p-sequence. Any element 8f is naturally associated wittp-sequenceés,) of (2.2)
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and(a,). In this way the sefl is identified with a subset of the Hilbert spaex ¢2 and
thus becomes a topological space. The results of [10] easily imply the following statement.

Proposition 2.3. The mapping: : Ear — 21, which maps a functios € Ea“ into the pair
{(A,%), (o)}, with (A,%) being the spectrum df (o) and («,) the corresponding sequence
of norming constants, is homeomorphic.

We shall show that the three spectradne £ determine the norming coefficienig
for k € B4, while those fork € A 4 remain undefined. This observation explains why non-
empty A 4 leads to nonuniqueness of the solution of the inverse spectral problem. More
exactly, we establish the following result.

Theorem 2.4. Suppose thatt € £ and A, # . For any sequencé)xca, belonging
to £2(A 4) and satisfying the conditioh+ 6; > 0, k € A 4, there exists a unique € 26“
such that(c) = A andag (o) =1+ 6; forall k € A 4.

As a corollary, we get the following description of the set(A).

Corollary 2.5. Suppose that € Zar and putA :=I[(o). Then

(TH(A) = {6 € ZF |Vn €N, 22(6) = A2(0) and Vk € Ba, ax(5) = ak(0)}.
(2.5)

Throughout the paper’ andu will denote derivatives of a functiom with respect to
x anda, respectively. Also, for a fixed function € H, the notatior:* means the quasi-
derivativeu’ — ou of a functionu.

3. Preliminary results

In this section we shall recall some known facts and prove statements to be used later
on.
Suppose that € £; we denote byﬁ, :=T([0, 1], o, c0) a Sturm—Liouville operator

d2
~dx?

with the Dirichlet boundary condition at the point= 0. More exactly7, acts according
to the formula

/

+o

Tou=1,u):=—W —ou) —ou'
on the domain
dom7, :={u € Wi[0, 11| u'™ € W10, 1], I, (u) € H, u(0) =0}.

In particular,T () is a restriction off,, imposing the Dirichlet boundary condition at the
pointx = 1.
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One of the key results of [12] states that the ffigimnd 7, possesses thtensformation
operatorI + K, that performs similarity off,, and7p and enjoys some nice properties.
Namely, K, is a Hilbert—Schmidt integral operator of Volterra type, i.e.,

X

(Kbuﬂx):i/kgu,ﬂua)dt
0

The kernek, of K, possesses the property that its cross-sectfp($ := &, (x, -) belong
to H for everyx € [0, 1] and, moreover, the mapping— f, is continuous froni0, 1]
into H.

The relation,, (I + K, ) = (I + K )To shows that any element of ddfn has the form
(I + K, )v, wherev is an arbitrary function froanz[O, 1] with v(0) = 0. Some additional
properties ofk,, imply that, foru = (I + K,)v with v as abovey!!(0) = v/(0).

For an arbitrary nonzera. € C, we denote bys_(-,1) = s_(-,A,0) (s4(-, 1) =
s+ (-, &, o)) a solution to the equatidp (1) = A2 satisfying the initial conditions(0) = 0
andu!t(0) = 1 (respectively, satisfying the terminal conditiand) = 0 andu!(1) = 1).
The above properties &, imply that

X
sinA SinAt
- == o +/kg(x,t) . (3.1)

0

Changing the variable to 1—x, we show existence of the transformation opermerK
for 7, and7p connected with the point = 1 and possessing similar properties; in partic-
ular, the kernek,, of K, has the property that, (x, -) € H for everyx € [0, 1] and

. l .
mx,)\):% /k(,( )%’_an (3.2)

X
According to the definition of .., we haves_(1, A,) = 54 (0, 1,) =0 ands_(a, Ao,n) =
s+(a, A,,) = 0. Moreover, for each fixed € [0, 1] the functions_ (x, A) ands4(x, A) are
even entire functions of of orderx and 1— x, respectively, and thus are uniquely deter-
mined by their zeros. The corresponding representations can be derived from the following
modification of Lemma 3.4.2 from [14], whose proof can be found in [11].

Proposition 3.1. For an entire functionf to admit the representation

smm
f)= f 3.3)
0
with some functiorf € H, it is necessary and sufficient that

00 2 42

JE—2
rN=|]+——, 3.4
) L[l 2 (3.4)

where f; = mk + fi, the sequencef;) belongs toalz, and+ f; are all the zeros of .
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Lemma 3.2. The following formulae hold

o0 42 2 00 42 2
Py W2, =
san=[lggr sen=all e
k=1 k=1 a

(a, ) =—(1 )]o"o[ My
st+@,A)=—01—a —_—
Hiza=-ar

Proof. The formula fors_(1, 1) follows directly from (3.1) and Proposition 3.1. Putting
g(t) :==aky(a,ar) € H, we find that

1
s_(a, sinai . _Sinaait
( )= —i—/g(t) dt =:g(a)).
ai
0

a ai

Therefore by Proposition 3.1 we have

e¢]

2
_ 8 — M1
g(u)—]!:[l R

where+g; have the required asymptotics and are all the zergs tifis easily seen that
gk = arok, SO that the representation for(a, 1) follows.
In the same manner we derive the formulasota, A), and the lemma is proved.c

2

At various points we shall also use the following well-known result (see, e.g., [8]).

Proposition 3.3. Assume thaty, k € Z,., are pairwise distinct positive numbers such that
vx —tk — 0ask — oo. Then the systenfsinv,x}2 ; and{cosvix};° , form Riesz bases
of L»(0, 1).

We denote bys the set of all functions of the form (3.3) (or, which is the same due to
Proposition 3.1, of the form (3.4)). The following simple statement will play an important
role for establishing uniqueness of solutions to the inverse spectral problem, so we give its
proof here.

Lemma 3.4. Suppose that € (0, 1) and that a sequenc@u,) of positive pairwise dis-
tinct numbers obeys the asymptotics = nn + o(1) asn — oo. If the functionsv;,
j=1,...,4, belongtoS and

vi(apn)v2((1— a)pn) = va(apmn)va((L— a)pun)
forall n € N, then

vl(aA)vz((l — a)A) = v3(ak)v4((1 — a))»).

Proof. Put v(%) := v1(ar)v2((1 — a)r) — vz(ar)va((1 — a)r). Integration by parts in
integral representations (3.3) for the functianys j = 1,...,4, and subsequent simple
transformations yield the representations



R.O. Hryniv, Ya.V. Mykytyuk / J. Math. Anal. Appl. 284 (2003) 626—646 635

1
V(W) = / exp(—irr) fj(r) dt
-1
with f; = x—1,11/2+ g;, wherex_1 1) is the indicator of the intervdl-1, 1] andg; are
even functions from the Sobolev spaWé(R) such that supp; C [—-1, 1]. We define
fin(x) = (1/b)fi(x/b)
for b € (0,1) andx € R and put

fi=/ra* fo1-a— f3a* faia,

where(¢ * ¥)(x) := qus(x — )Y (t) dt is the convolution of functiong andy . Then the
function f is even, belongs to1(R), suppf C [-1, 1], and

; . lsin)»t ,
v(L) =/exp(—ﬁ¢)f(t)dt=—2/ Tf (1) dt.
-1 0

By assumption,

1
. 1
/Sm(ﬂnt)f/(t) di = =S pnv(un) =0
0

for all n € N; since by Proposition 3.3 the systefsinu,t},en iS complete inH and
f' € H,we getf’=0. Thusv =0, and the lemma is proved.O
4. Propertiesof thefunctionsu 4, ug 4, and uy, 4

With an arbitraryA = ((2), (A3,,). (A2 )) € £, we shall associate entire functions,
uo, A, anduz 4 given by

0 42 2 00 42 2

22 32, — A

ua) ="  wa® =[]
PG 1L Gk/a)

0 52 52 4.1
ugA(A) = ]_[ S LSRR
' [rk/(1—a)]?
k=1
Observe that it € Ea“ is such that(o) = A, then these functions are related to solutions

s+ (-, A, o) of the equatior, (1) = Au in the following way (see Lemma 3.2):
s—(LA,0)=uas(d), s—(a,r,0) =aup (), 4.2)
sy(a, h,0)=—A—a)ug A(1).

In this section, we shall establish some important properties of the funatigresd
uj A, j =0,1, that will essentially be used in Section 5. We start with the following two
lemmata.
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Lemma4.1. Suppose thatt € £; then we have
(=D"Antia(An) =1+dy >0, neN, (4.3)
where(d,) € ¢>.

Proof. The fact that the left-hand side of (4.3) is positive follows from (4.1). Proposi-
tion 3.1 and formula (3.3) imply that

1
— cosh,, +/tf(t)COSAntdt
A=Ay
0

Antip(An) = i ()LMA()\))
dx

for somef € H. Now the statement easily follows from the asymptotics of the nunibers
and the fact that by Proposition 3.3 the systgrosi,t},cn forms a Riesz basis of its
closed linear spaniti. O

Lemma 4.2. Suppose thatt € £ and that sequence$; i)ren, j = 0, 1, of positive pair-
wise distinct numbers are such that

wk wk
ok =—+nok, E1k=7—+n1k, keN,
a 1—a
where(n; x) € €2, j =0, 1. Then there exist>-sequenceél; ), j =0, 1, such that

(—D¥eoiioa(Gop) =1+dok,  (—DFeriinaEre) =1+ dik
for all k e N.

Proof of this statement is similar to that of Lemma 4.1 and thus is omitted.
The principal result of this section is as follows.

Theorem 4.3. Suppose thai € (0, 1) is irrational and A € £. Then for allk € M (a) (see
Definition2.1)we have

amkuoa(k) <a>2 Mo — M

sin(ark) ) (k)2 = (ak)?

(L—amkugaOp)  (1—a\> 20—

Sin((l—a)nk) - ( T > (k,/)z_ (1_a)2k2(1+cl,k)7 (45)
where(c; «), j =0, 1, are some sequences frdam(M (a)).

A+ co.n)s (4.4)

The proof of this theorem is based on the next three lemmata.

Lemma4.4. Assume that = (x,);2 ; is a sequence of complex numbers fignsuch that

Ix,] < 1/2 for all n € N and the serie$ "2 ; x, converges. PuG (r) := t expr; then the
following inequality holds

1- T+ <G(

n=1

o
D

n=1

o0
+Y |xn|2>.
n=1
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Proof. Taking the principal branch of the logarithm and using the inequality

1

e —log+2)| <zl lel< 3,
we find that

00 00
Z Xn — Z IOg(l + xn)
n=1 n=1

and hence that

o

2

<) lxal?,
n=1

<

log [ 1+ xa)

n=1

00 00

2
>onl+ Yl
n=1 n=1

Now, taking into account thatl — expz| < |z|eXp(|z]) = G(|z|) for all complexz, we

conclude that

Lemma 4.5. Suppose thatr,,),cn is a sequence of positive numbers with— n| < 1/2
for all n € N. Then linear operatorgf* in £, that act according to the formula

fn)
4+’

n

log [ T +xu)

n=1

1-— l_[(l—i—xn)
n=1

00
D
n=1

o
+) |xn|2>
n=1

as claimed. O

(H* k)= keN,
n#k

are continuous.

Proof. We denote byHgE the operators corresponding to the particular ogase n for
everyn € N; then continuity of the Hilbert operators [7, Chapter 5] implies tHg"( are
continuous ir2. Now we find that

00 1/2 1/2
+ + |f(n)] 1 |f I
|(H*f — Hy f)(k)‘gg(nik)2<(2;ﬁ> <§(H—k)2) 7

where we have used the inequality/ (x + y)| < |1/x]| holding for all realx andy with
x| > 1 and|y| < 1/2, the Cauchy—Schwarz—Bunyakowski inequality and the estimate
> a1/ (n £k)? <23 1/n? Henceforth,

1\ | f (n)]?
s < (23 3 )35
n=1

k=1nk

2
[ele} 1 [ele} 1 o0 1 4
= (Qﬁ)@f@)ﬁ%} 2 S (22 ;) ||f||2=%||f||2,

n=1

so that| H* — Hi|| < 72/3, and the operator* are continuous ii;. 0
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Lemma 4.6. Suppose that € (0, 1) and (w,), (w),) are £2-sequences. We put for each
k € M(a) (see Sectioa for definition),

2 /\2
b(n,k):{%—l ifneN\ (K1,
0 ifn==K.
Then
o0
l_[(1+b(n,k))=1+ck,
n=1

where(cy) € £2(M(a)).

Proof. The lemma will be proved as soon as we establish the following properties of the
numbers(n, k):

(a) There exist%o € N such thatjb(n, k)| < 1/2 for alln € N and allk € M(a) larger
thanko;

(b) ZkeM(a) | >z b(n, k)|? < oo;
(©) Ykema) Lomet 16, 0% < o0,

In fact, if (a)—(c) are satisfied anty andC» denote the sums in (b) and (c), respectively,
then, by Lemma 4.4, we have fbr> kg,

lex] < ( > b(n,k) +Z|b(n,k)\2> exp(y/C1+ C2),
n=1 n=1

so that

Zb(n,k)

n=1

" > (i\b(wmlz)z]

keM(a) \n=1

Y el < 2[ >

keM(a) keM(a)
k>ko

x exXp(2y/C1 + 2C»)
< 2(C1+ C3) exp(2y/C1 + 2C).
For everyk € M(a) andn € N\ {k'}, we put

) 2nwy, . 2akw),
N e P T T
2 1\2
o (@)
b3(n, k) = —"1— ba(n, k) = ———F
3(n, k) W2 (b 4(n, k) 2 (@

andletb;(k’',k) =0, j=1,2,3,4.Itis easily seen that

b(n,k) =b1(n, k) +ba(n, k) + bz(n, k) +ba(n, k), neN, ke M(a),
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and therefore it suffices to establish the above properties (a)—(c) for the numberk),
Jj =12 3,4 (with the bound 12 in (a) replaced with A8). Actually, instead of (a) we
shall establish a stronger property

(&) sup,en 1bj(n, k)| — 0 ask € M(a) tends tooo.

To begin with, we recall that, by definitiofy — ak| > 1/s if n # k' anda = r/s with
relatively primer ands and thatjn — ak| > a(1 — a)/2 if n # k’ anda is irrational;
henceforth,

1 1
sup ————— <00, sup <0
keM(a) \ =7, In? — (ak)?| neN L [n? — (ak)?|
k'#n
For j =3 andj = 4 this observation implies that_; ;) >_,en 10 (1, k)| < o0, and
thus (d), (b), and (c) hold.
For j =1, we easily derive (afrom the representation

Wy Wy

+ ,
—ak n+ak
Also notice that(ak)keM(a) is a subsequence of some sequeagp,cn Ssatisfying the
assumptions of Lemma 4.5. Therefore by Lemma 4.5 we conclude that the seq@n&;}"r)ces

with
wn
df =
k Z n=+ak’
n#k’

belong tof2(M (a)) so that (b) is satisfied. Property (c) follows from the fact that

|(Un| 1 2
max —_— w, < Q.
Z Z :I:ak|2 neN Z |n £ ak|? Z' d
keM(a) n;ék/ keM(a) neN

k'#n

Finally, for j = 2 the inequalitylb2(n, k)| < 2|w,|/|n — ak| justifies property (3. In a
similar way we show that

2 4
Z gZ(n_ak)ch

n#k’ n#k’

for someC > 0 independent ok, and thus (c) holds. Property (b) follows from the in-
equality below, in which, fok € M (a), we have puk := |k’ — ak| and used the bounds
s < 1/8 andak > 7/8

Z n2 — (ak)2

n;ék/

bi(n. k) =~ neN\{K}.

2ak
n? — (ak)?

2ak 1 1
2 2
n (ak) Jon + ak Son ak

n>2ak
n#k’ n#k’

k'—1
8ak 1 1 1
2 _
= Z 2t +|:Z<n—s n+s>+k/—s:|

n>2ak n=1
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Bak o, 1 2.,.8 4
< < — - <T7.
32ak — 1) 1-5 -9 7

The lemma is proved. O

Proof of Theorem 4.3. Due to the symmetry betweeM (a) and M (1 — a) (see Sec-
tion 2), it suffices to prove only relation (4.4). Taking into account the definition of the
functionug, 4 and the equality

9]

sin(amk) _ l—[ (mn)? — (amk)?
B (rn)2

ark
n=1

we find that, for allk € M(a),
(amkyuo a(h) ﬁ < a )2 Mo =M

sin(ark) - 7 ) n2—(ak)?’

Hence the theorem will be proved as soon as we establish the relation

a\? 23, — A2
[1(2) 2—5=1+cox. keM@). (4.6)
ntk! ) n?— (ak)?

for some sequenaeo k) € £2(M(a)).
Observe that, according to (2.2) and (2.3), we have

2
a

<;> ()‘g,n - )‘I%) =(n+ (1)/1)2 — (ak + (1)]1)2,

where (w,) and (w],) are somefz-sequences. Thus representation (4.6) follows from

Lemma 4.6, and the proof is completex

5. Thedirect spectral problem

In this section we shall study the direct spectral problem, i.e., shall study the spectral
properties of the operatof&(c) andT;(c), j =0,1,foro € )36“. Our aim is to prove the
next statement.

Theorem 5.1. Suppose that EJ; then the tripleA := [(o) belongs to the set.

In order to prove the theorem, we need only show thaterifies conditions (1)—(3) of
Definition 2.1.

As we have already mentioned, the eigenvalue asymptotics for the Sturm-Liouville
operators with singular potentials frodir,” 10, 1) is established in several papers (see,
e.g., [19,20] and also [10]). Thus the sequer(aés and(kin) of A satisfy condition (1).

The interlacing properties of the sequence® and (12) := (A5 ) LT (A2 ) (i.e., the
inequalitiesi? < uf and u2 <2, <2, foralln e N) is proved, e.g., in [4, Sec-

tion 1V.8.1]. Also, among each triplg2, A2 ,, andu2, ;, n € N, all numbers are either
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pairwise distinct or all equal. Indeed, if, e.g.2 = AﬁH andu,1 is the corresponding
eigenfunction of7", thenu,;1(a) = 0 and the restrictions af, 1 onto [0, a] and[a, 1]
give eigenfunctions ofp and71; thus alsqu?, ; = A2 ;. These reasonings establish (2).

It remains to verify condition (3). We shall do this in the following way: first derive a
representation of the norming constamjgo) for the operatofl’' (o) via A and then use
this representation and the asymptotic behaviour,@f ) to establish (3).

Lemma 5.2. Suppose that e Ear and putey, := o, (o) ands+ (-, 1) := s+ (-, A, 0); then
for all n € N we have

Sy (-5 An) = AnS— (L, Ap)s—(-, Ap). (5-1)

Proof. Recall thatg, := v/2A,s_(-, A,) is an eigenfunction of the operat@r = T (o)
corresponding to the eigenvalm% and thatw, := ¢, ||2. Therefore the Green’s function
of the operatofl” equals

9]

G(x,y. 2= % x,yel0,1].
n=1 n

On the other hand, we have

s_(x, M54 (y,0) FO<x<y<]

1
2y _
Gy, 2% {s+(x,x>s_(y,x> if0<y<x<l

WO

where W (1) := s (x, 1)s1-(x, 2) — s!8(x, 1)s_(x, 1) is the Wronskian of the solutions

s+(-,A) ands_(-, ). The value ofW (1) is independent of; in particular, takinge = 1
we getW (A) = —s_(1, A). Combining the above equalities and putting: y, we arrive at
the identity

i 2552 hn) _ s (3, st (3, 2)
an (A2 — 22) s_(1,2)

n=1
Formula (5.1) follows now after equating the residues of both sides of this identity at the
polesh=2,. O

If n € By, thensi(a, A,) # 0, so that we can take=a in equality (5.1), divide both
its sides by (a, A,), and then express. (a, A,,) in terms ofu; 4 as in (4.2). This results
in the following statement.

Corollary 5.3. Suppose that € EJ and A = [(o); then forn € B, it holds

auo, A(Ay)

ap(0) = —)“n’l/‘()‘”)m'

(5.2)

Itis proved in [10] that the norming constargts,) have the representation = 1+ @,
with (&,) € £2. Thus the right-hand side of (5.2) obeys the same asymptotics, and we
shall show next that this asymptotics implies condition (3) of Definition 2.1. The crucial
observation is contained in the next statement.
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Lemma 5.4. Condition(3) in Definition2.1of the setL is equivalent to the following one

(3) The sequencé,),es,, Where

a”O,A(An)

— 1, ne By,
(L= a)us () 4

Vi = Yu(A) = (="
belongs tal2(B ).

Assuming for the time being that Lemma 5.4 is already proved, we argue as follows. By
Lemma 4.1 we have the relation

(—1)”)»,11,2/3()»,,) =1+ dn

with somef,-sequencéd,,); henceforth equality (5.2) for all € B4 can be recast as

and this representation easily yields the inclusign,cz, € £2(B4). Thus condition (3
holds, and by Lemma 5.4 also condition (3) takes place.

To sum up, taking for granted Lemma 5.4, we have shownahatC and thus finished
the proof of Theorem 5.1.

It remains to establish Lemma 5.4.

Proof of Lemma5.4. Suppose that a tripld = ((A2). (A3 ). (A2 )) of strictly increasing
sequences of positive numbers satisfies conditions (1) and (2) of Definition 2.1. We shall
show thatA satisfies condition (3) of this definition if and only if'§3above is verified.

We recall that by definitioB, = B, N M (a) and putB’} := B4 \ M (a). Our first step
is to show that the sequen(:)a,)negx always belongs té2(B’)).

Observe that, for any € B/; we have

auo,A(h)  _ ariuo a(h) Sin((1 —a)mk)
(1 —a)uz, A(rr) sin(ark) (1 —a)irus, o)’
It follows from (3.1), (3.2), and (4.2) that

(5.4)

14y = (=D

arguo a(h)  sin(aig)
sin(ark)  sin(amk)

1 ,
+Sin(ank)/fo(t)sm(kkt)dt,
0

(I —a)eu,aG)  sin((L—a)re) 1
sin((1—a)7k)  sin((l—a)k) ' sin(1—a)k)

1—a
/ f1(®) sin(igt) dt,
0

where fo, f1 € H. Since by Proposition 3.3 the systdsinit}ien forms a Riesz basis
of H, the sequence®o x) and(c k) with

=

—a

a
cok = / fo(t) sinigt dt, ClLk:= Sf1(t) sinAgt dt
0

o
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belong to¢,. Also, by the definition of the se¥/ (a),
sup 1/[sin(ak)|= sup 1/|sin((1—a)mk)| < oo,
keN\M (a)

keN\M (a)
so that

sin(aiy) sin((1 — a)Ax)

=140 and —————"~ =1+ O0(ax), keN\M(@),

sin(amrk) + 0@ sin((1—a)rk) + 0@ €N\ M(a)
with (ax) € £2 being the sequence of (2.2). Thus we have shown that

14+¢;
1+y= 17 e ke B,

where(cy), (¢}) € £2(B}), and the claim follows.

The second step is to show that, under the assumptions imposgdonditions(yx) €
£2(B))) and (&) € £2(B')) are equivalent. To this end it suffices to prove that there exists a
sequenceée;) € £2(B’)) such that the following equality holds for dlle B/, :

1+ v =148 A+ e). (5.5)
Suppose thai is irrational. Then, due to equality (5.4) and Theorem 4.3 we have

2 )\2 ,—)»2 k//2_ 1— 2k2
1+Vk=< a) ok “H W)= A-aR ) keB,,  (56)

l-a) (K)2—(@k)? 22,22
where(cy) € £2(B’)). Asymptotics of the sequences;), (o), and(ry ) implies that
Ak + Mk

=14+0@1/k), keM(a).
Y (1/k) (@)

Moreoverk’ — ak = —k" + (1 — a)k and
a(k” + (1 —a)k)
(A —a)(k' + ak)

Combining this relation into (5.6), we easily derive (5.5) for samg € ¢2(B/,).
Assume now that is rational. Then for any € B/, we find that

=1+ 0(1/k), ke M).

auo (M) gy aito, A (hox) Ok = hox')
(L—a)u1,a(4) (L — @), aGeaxr) Ok = Aagr)
where g (respectivelyii ;) are some numbers betwegp and Ao (respectively,
betweem; andiq ). In particular, if the seB’; is infinite, then the numbers - and
L1 have the asymptotics

1+ p = (=Dt

Aow =mk'/a+nok, A =7k"/(L—a)+n1k. ke B),

for somet2(B’,)-sequence&; i), j =0, 1. Since fork € M (a) we have
rk=nk'/a=nk"/1—a) and k' +k" =k,

representation (5.5) easily follows from Lemma 4.2. The lemma is proved.

Using formula (5.3), Lemmata 4.1 and 5.4, we can easily prove the following statement.
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Coroallary 5.5. Assume thati € £ is arbitrary and construct the numbeus for n € B,4
according to(5.2);then the sequende,, — 1),cp, belongs to¢2(B4).

6. Theinverse spectral problem: Proof of the main results

In this section, we shall solve the inverse spectral problem. In other words, we shall
show how a potentiad Ear can be recovered via the spectral ddte-= [(o) and prove
that any tripleA in £ is the spectral data corresponding to same 25“, i.e., thatl =
[(Zar). Since the procedure is the same for both parts, we shall treat only the second one,
which is more general.

Assume therefore that = ((12), (A%)n), (A2 ,)) € £. We construct the corresponding
functionsu 4 andu; 4, j =0, 1, as explained in Section 4 and, for evérg B4, we define
a numbery; through formula (5.2). According to the results of the previous section (see
Corollary 5.5), the sequence, — Dxep, belongs tala(Ba). If Ax # @, then we take an
arbitrary sequencés)reca,, from £2(A 4) obeying the inequalityy, > —1 forallk € A
and putog :=1+ 6, k€ Ay.

The sequencéw;,),en SO constructed consists of positive numbers and satisfies the
asymptotic relatiorw,, = 1 + &, with an £2-sequencega,). The pairS := {(A,f), (o)}
belongs taA and thus we can use Proposition 2.3 and the reconstruction algorithm of [10]
to find a uniquer € X such thati(o) = S, i.e., such that2(o) = A2 anda, (o) = a,, for
alln eN.

It remains to prove that the functian so defined satisfies the equality) = A, i.e.,
that (A?)n) are the spectra of the operatdigo), j =0, 1.

To this end we writeA := (o) and denote by»2 = AZ (o), j =0,1, the spectra
of T;(¢0) and byu  the corresponding entire functlons It follows from Lemma 5.2 and
formula 4.2) that

an(o)(1— a)ul’/}()\n) = _)LndA()\n)auo’/}()\n);
recalling the definition of,, we derive from this the equalities

uO,A()Ln)Ml,A()Ln) zuo,,}()\n)ul,A()\n) (6.1)

forall n € B4. Sinceug o(Ay) =u1,4(An) =0 for alln € A4, equalities (6.1) hold for all
n € N. We apply now Lemma 3.4 and conclude that

UO, AUy =Ug jULA-

The above identity implies the following property:

(*) The functionse; 4 anduj’/;, j =0, 1, have the same zeros outside the{sg}, cN.

Observe that the triplea and A belong tog (the former by assumption and the latter by
Theorem 5.1) and thus they enjoy property (2) of Definition 2.1 (Rt := (A5, ) LT (A% )

and (;15) = (A Rt (Al ,) then, in view of ¢) and property (2) of Definition 2.1, the



R.O. Hryniv, Ya.V. Mykytyuk / J. Math. Anal. Appl. 284 (2003) 626—646 645

equality A = A holds if and only if the sequencég?) and(ji2) coincide, i.e., if and only
if identically equal are the counting functions

r() =#neN|u,<t}, 7@)=#neN|n,<t}, teR.

We obviously have (1) = 7(r) = 0 for ¢t € (—o0, A1]. Assume that the equality(r) =
7(¢) is already proved for € (—o0, A,,] for somen € N. If r(A,) =7(1,) = n, then prop-
erty (2) of Definition 2.1 yields the relations, = i, = An, Un+1 > Antls Antl > Anti
and hence(+) =7(t) = n for all t € (A, An+1]. Otherwiser(i,) =F(A,) =n — 1, and
then either (D, € (Ay, Ans1) O (il) wn, = Ayp1. In case (i) we see that, = u, due to
property &) and p,+1 > Ap+1 and fi,4+1 > An41 due to property (2) of Definition 2.1;
as a resultr(r) = r(t) for t € (An, Ay+1]. In case (ii), again by«) and property (2) of
Definition 2.1, we havei, = u, = An+1 = Unt1 = fnt1, @nd thusr(t) = r(¢) for all
t € (Ay, An+1]. The induction i establishes now the identity= r; henceforth we have
shown thatd = A, and the reconstruction procedure is complete.

We are now in a position to prove Theorems 2.2 and 2.4 and Corollary 2.5.

Proof of Theorems 2.2, 2.4, and Corollary 2.5. The inclusion[(Zar) C £ is justified by
Theorem 5.1, while the above reconstruction algorithm statesﬂthat(zar). Therefore
the mapping: ):af — L is surjective as claimed by Theorem 2.2.

Suppose that € X ands € X7 satisfy the relations(o) = [(6) =: A andoy (o) =
ay(c) fork € A4. Then in view of Corollary 5.3 we also hawg (o) = o (6) fork € B4.
Thusa(o) = a(6) and hence = 6 by Proposition 2.3. This proves uniqueness statements
of Theorems 2.2 and 2.4, while existence is demonstrated by the above reconstruction
algorithm.

To prove Corollary 2.5, we denote the right-hand side of (2.5814y1). For anys €
(=1(A) the valuesx () of the norming constants for € B, are prescribed byl by
Corollary 5.3 (in particulary (5) = ax (), so that the inclusiofr 1(A) ¢ X (A) holds.

To justify the reverse inclusion, we take an arbitrérye X (A); then the sequence
(ak(6))kea, has the form as required in Theorem 2.4 and hence there exists a unique
g€ EJ such thati(6) = A anday(6) = ax(6) for k € A4. Again by Corollary 5.3 we
have thatu; (6) = ax (o) for k € By and thus alsa@ (6) = ax(6) for k € B4. Proposi-
tion 2.3 now implies thaé = &; henceforths € [~1(A), and the proof is complete.o
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