414 research outputs found

    Changes in Body Measurements of Heifers at First Parturition

    Get PDF
    Author Institution: Department of Dairy Science, Ohio Agricultural Experiment Station, Wooste

    Meadow spittlebug control with new insecticides

    Get PDF

    Development of an Uncertainty Model for the National Transonic Facility

    Get PDF
    This paper introduces an uncertainty model being developed for the National Transonic Facility (NTF). The model uses a Monte Carlo technique to propagate standard uncertainties of measured values through the NTF data reduction equations to calculate the combined uncertainties of the key aerodynamic force and moment coefficients and freestream properties. The uncertainty propagation approach to assessing data variability is compared with ongoing data quality assessment activities at the NTF, notably check standard testing using statistical process control (SPC) techniques. It is shown that the two approaches are complementary and both are necessary tools for data quality assessment and improvement activities. The SPC approach is the final arbiter of variability in a facility. Its result encompasses variation due to people, processes, test equipment, and test article. The uncertainty propagation approach is limited mainly to the data reduction process. However, it is useful because it helps to assess the causes of variability seen in the data and consequently provides a basis for improvement. For example, it is shown that Mach number random uncertainty is dominated by static pressure variation over most of the dynamic pressure range tested. However, the random uncertainty in the drag coefficient is generally dominated by axial and normal force uncertainty with much less contribution from freestream conditions

    Denosumab rapidly increases cortical bone in key locations of the femur: a 3D bone mapping study in women with osteoporosis.

    Get PDF
    Women with osteoporosis treated for 36 months with twice-yearly injections of denosumab sustained fewer hip fractures compared with placebo. Treatment might improve femoral bone at locations where fractures typically occur. To test this hypothesis, we used 3D cortical bone mapping of postmenopausal women with osteoporosis to investigate the timing and precise location of denosumab versus placebo effects in the hips. We analyzed clinical computed tomography scans from 80 female participants in FREEDOM, a randomized trial, wherein half of the study participants received subcutaneous denosumab 60 mg twice yearly and the others received placebo. Cortical 3D bone thickness maps of both hips were created from scans at baseline, 12, 24, and 36 months. Cortical mass surface density maps were also created for each visit. After registration of each bone to an average femur shape model followed by statistical parametric mapping, we visualized and quantified statistically significant treatment effects. The technique allowed us to pinpoint systematic differences between denosumab and control and to display the results on a 3D average femur model. Denosumab treatment led to an increase in femoral cortical mass surface density and thickness, already evident by the third injection (12 months). Overall, treatment with denosumab increased femoral cortical mass surface density by 5.4% over 3 years. One-third of the increase came from increasing cortical density, and two-thirds from increasing cortical thickness, relative to placebo. After 36 months, cortical mass surface density and thickness had increased by up to 12% at key locations such as the lateral femoral trochanter versus placebo. Most of the femoral cortex displayed a statistically significant relative difference by 36 months. Osteoporotic cortical bone responds rapidly to denosumab therapy, particularly in the hip trochanteric region. This mechanism may be involved in the robust decrease in hip fractures observed in denosumab-treated women at increased risk of fracture.This study was funded by Amgen Inc., Thousand Oaks, CA, USA. Cambridge Bone Group is supported by Arthritis Research UK, The Evelyn Trust, and Cambridge NIHR Biomedical Research Centre.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/jbmr.232

    High Temperature Thermopower in La_{2/3}Ca_{1/3}MnO_3 Films: Evidence for Polaronic Transport

    Full text link
    Thermoelectric power, electrical resistivity and magnetization experiments, performed in the paramagnetic phase of La_{2/3}Ca_{1/3}MnO_3, provide evidence for polaron-dominated conduction in CMR materials. At high temperatures, a large, nearly field-independent difference between the activation energies for resistivity (rho) and thermopower (S), a characteristic of Holstein Polarons, is observed, and ln(rho) ceases to scale with the magnetization. On approaching T_c, both energies become field-dependent, indicating that the polarons are magnetically polarized. Below T_c, the thermopower follows a law S(H) prop. 1/rho (H) as in non saturated ferromagnetic metals.Comment: 10 pages, 5 .gif figures. Phys. Rev B (in press

    Elucidating the functional role of nitric-oxide in Bacillus subtilis by proteomic analysis

    Get PDF
    A Nitric-oxide synthase-like (NOS) protein has been found to be present in several Gram-positive bacteria, including Bacillus subtilis. NOS generates nitric-oxide from the amino acid L-arginine via the stable intermediate N-hydroxy-L-arginine. The function of NO production in Gram-positive bacteria has not yet been elucidated, but studies indicate a function in signal transduction. In this study, a proteomic approach is used to examine the physiological role of NO in the Gram-positive model bacteria, B. subtilis. Protein profiles obtained from two-dimensional gel electrophoresis of cells grown in the presence of aminoguanidine, a known NOS inhibitor, revealed the downregulation of three proteins via NO inhibition over a pI range of 4 – 7 when compared to an uninhibited sample. These three proteins were identified by LC-MS/MS as a nucleoside diphosphate kinase, an MreB-like protein, and a phage shock A protein homolog. The down-regulation of these proteins via NOS inhibition provides preliminary evidence that NO plays a signal transduction role in Gram-positive bacteria

    Blackstone LaunchPad University of Montana Strategic Analysis/Jacob Treece Honors Capstone Report

    Get PDF

    A new quantitative 3D approach to imaging of structural joint disease.

    Get PDF
    Imaging of joints with 2D radiography has not been able to detect therapeutic success in research trials while 3D imaging, used regularly in the clinic, has not been approved for this purpose. We present a new 3D approach to this challenge called joint space mapping (JSM) that measures joint space width in 3D from standard clinical computed tomography (CT) data, demonstrating its analysis steps, technical validation, and reproducibility. Using high resolution peripheral quantitative CT as gold standard, we show a marginal over-estimation in accuracy of +0.13 mm and precision of ±0.32 mm. Inter-operator reproducibility bias was near-zero at -0.03 mm with limits of agreement ±0.29 mm and a root mean square coefficient of variation 7.5%. In a technical advance, we present results from across the hip joint in 3D with optimum validation and reproducibility metrics shown at inner joint regions. We also show JSM versatility using different imaging data sets and discuss potential applications. This 3D mapping approach provides information with greater sensitivity than reported for current radiographic methods that could result in improved patient stratification and treatment monitoring

    Application of Volume-Integral Models to Steam Generator Tubing

    Get PDF
    The nuclear power industry faces the serious challenge of convincing a skeptical public and regulatory agencies that it can operate safely and efficiently. Nondestructive evaluation (NDE) plays a significant role in this task, and computer modeling is playing a significant role in NDE. The industry now realizes the value of using such modeling to replace expensive experimental tests, as well as to design equipment, and interpret results. Eddy-currents have a traditional place in the inspection of steam generator tubing, and the industry seeks improved tools for such inspections. In this paper, we describe progress in developing a general axisymmetric model that will be part of the volume-integral code, VIC-3D1. This model will be capable of analyzing tubes with tube supports and rolled-expansion transition zones. Features such as magnetite, sludge, etc., will be included, and materials may be either ferromagnetic or non-magnetic. The model described in this paper will include only differential (or absolute) bobbin coils. Flaws can be of three types: (1) axisymmetric (such as circumferential rings), (2) the usual thin, axially-oriented, crack that is part of VIC-3D’s present library, and (3) user-defined flaws, such as inter-granular attack (IGA)
    corecore