28 research outputs found
Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches
Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy
Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors
BACKGROUND: Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. METHODS: Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. RESULTS: The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. CONCLUSION: Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival
Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system
Purpose: To conduct a controlled trial of bevacizumab for the treatment of symptomatic radiation necrosis of the brain. Methods and Materials: A total of 14 patients were entered into a placebo-controlled randomized double-blind study of bevacizumab for the treatment of central nervous system radiation necrosis. All patients were required to have radiographic or biopsy proof of central nervous system radiation necrosis and progressive neurologic symptoms or signs. Eligible patients had undergone irradiation for head-and-neck carcinoma, meningioma, or low- to mid-grade glioma. Patients were randomized to receive intravenous saline or bevacizumab at 3-week intervals. The magnetic resonance imaging findings 3 weeks after the second treatment and clinical signs and symptoms defined the response or progression. Results: The volumes of necrosis estimated on T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium-enhanced magnetic resonance imaging scans demonstrated that although no patient receiving placebo responded (0 of 7), all bevacizumab-treated patients did so (5 of 5 randomized and 7 of 7 crossover) with decreases in T2-weighted fluid-attenuated inversion recovery and T1-weighted gadolinium-enhanced volumes and a decrease in endothelial transfer constant. All bevacizumab-treated patients - and none of the placebo-treated patients - showed improvement in neurologic symptoms or signs. At a median of 10 months after the last dose of bevacizumab in patients receiving all four study doses, only 2 patients had experienced a recurrence of magnetic resonance imaging changes consistent with progressive radiation necrosis; one patient received a single additional dose of bevacizumab and the other patient received two doses. Conclusion: The Class I evidence of bevacizumab efficacy from the present study in the treatment of central nervous system radiation necrosis justifies consideration of this treatment option for people with radiation necrosis secondary to the treatment of head-and-neck cancer and brain cancer. © 2011 Elsevier Inc