253 research outputs found

    Electrochemical testing of an innovative dual membrane fuel cell design in reversible mode

    Get PDF
    Solid oxide fuel Cells (SOFC) are intrinsically reversible which makes them attractive for the development of reversible devices (rSOC). The main hurdles that have to be overcome are the higher degradation in electrolyzer (EL) mode and the slow and difficult switching form mode to mode. This work aims at the development and experimental validation of a concept for rSOC based on a new dual membrane fuel cell (dmFC) design which can overcome the existing problems of the classical SOFC. The kernel of the system is additional chamber - central membrane (CM) for water formation/evacuation in FC mode and injection in El mode. Its optimization in respect of microstructure and geometry in laboratory conditions is carried out on button cells. The electrochemical performance is evaluated based on volt-ampere characteristics (VACs) combined with impedance measurements in different working points. The influence of a catalyst in the water chamber is also examined. The VACs which give integral picture of the cell performance are in excellent agreement with the impedance studies which ensure deeper and quantitative information about the processes, including information about the rate limiting step. The results from the optimization of the water chamber show that the combination of design and material brings to important principle advantages in respect to the classical rSOC \u2013 better performance in electrolyzer mode combined with instantaneous switching

    Moving glass phase of driven lattices

    Full text link
    We study periodic lattices, such as vortex lattices, driven by an external force in a random pinning potential. We show that effects of static disorder persist even at large velocity. It results in a novel moving glass state with topological order analogous to the static Bragg glass. The lattice flows through well-defined, elastically coupled, {\it % static} channels. We predict barriers to transverse motion resulting in finite transverse critical current. Experimental tests of the theory are proposed.Comment: Revised version, shortened, 8 pages, REVTeX, no figure

    A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells.

    Get PDF
    Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis

    Equilibration and Dynamic Phase Transitions of a Driven Vortex Lattice

    Full text link
    We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2_2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.Comment: 5 pages, 4 figure

    Driven vortices in 3D layered superconductors: Dynamical ordering along the c-axis

    Full text link
    We study a 3D model of driven vortices in weakly coupled layered superconductors with strong pinning. Above the critical force FcF_c, we find a plastic flow regime in which pancakes in different layers are uncoupled, corresponding to a pancake gas. At a higher FF, there is an ``smectic flow'' regime with short-range interlayer order, corresponding to an entangled line liquid. Later, the transverse displacements freeze and vortices become correlated along the c-axis, resulting in a transverse solid. Finally, at a force FsF_s the longitudinal displacements freeze and we find a coherent solid of rigid lines.Comment: 4 pages, 3 postscript figure

    Elastic-to-plastic crossover below the peak effect in the vortex solid of YBa2Cu3O7 single crystals

    Full text link
    We report on transport and ac susceptibility studies below the peak effect in twinned YBa2Cu3O7 single crystals. We find that disorder generated at the peak effect can be partially inhibited by forcing vortices to move with an ac driving current. The vortex system can be additionally ordered below a well-defined temperature where elastic interactions between vortices overcome pinning-generated stress and a plastic to elastic crossover seems to occur. The combined effect of these two processes results in vortex structures with different mobilities that give place to history effects.Comment: 4 pages, 4 figures. Published in PRB Rapid Comm., February 1, 200

    Fluorescence and spin properties of defects in single digit nanodiamonds

    Get PDF
    International audienceThis article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects. After proper surface cleaning, the dephasing times of the electron spin resonance in the nanocrystals approach values of some microseconds, which is typical for the type Ib diamond from which the nanoparticle is made. We conclude that despite the tiny size of these nanodiamonds the photoactive nitrogen-vacancy color centers retain their bulk properties to the benefit of numerous exciting potential applications in photonics, biomedical labeling, and imaging

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    Moving glass theory of driven lattices with disorder

    Full text link
    We study periodic structures, such as vortex lattices, moving in a random potential. As predicted in [T. Giamarchi, P. Le Doussal Phys. Rev. Lett. 76 3408 (1996)] the periodicity in the direction transverse to motion leads to a new class of driven systems: the Moving Glasses. We analyse using several RG techniques the properties at T=0 and T>0T>0: (i) decay of translational long range order (ii) particles flow along static channels (iii) the channel pattern is highly correlated (iv) barriers to transverse motion. We demonstrate the existence of the ``transverse critical force'' at T=0. A ``static random force'' is shown to be generated by motion. Displacements grow logarithmically in d=3d=3 and algebraically in d=2d=2. The persistence of quasi long range translational order in d=3d=3 at weak disorder, or large velocity leads to predict a topologically ordered ``Moving Bragg Glass''. This state continues the static Bragg glass and is stable at T>0T>0, with non linear transverse response and linear asymptotic behavior. In d=2d=2, or in d=3d=3 at intermediate disorder, another moving glass exist (the Moving Transverse Glass) with smectic quasi order in the transverse direction. A phase diagram in TT force and disorder for static and moving structures is proposed. For correlated disorder we predict a ``moving Bose glass'' state with anisotropic transverse Meissner effect and transverse pinning. We discuss experimental consequences such as anomalous Hall effect in Wigner crystal and transverse critical current in vortex lattice.Comment: 74 pages, 27 figures, RevTe

    Associating Genes and Protein Complexes with Disease via Network Propagation

    Get PDF
    A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE's predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation
    corecore