501 research outputs found

    Optimal Serial Distributed Decision Fusion

    Get PDF
    The problem of distributed detection involving N sensors is considered. The configuration of sensors is serial in the sense that the (j - 1)th sensor passes its decision to the jth sensor and that the jth sensor decides using the decision it receives and its own observation. When each sensor employs the Neyman-Pearson test, the probability of detection is maximized for a given probability of false alarm, at the Nth stage. With two sensors, the serial scheme has a performance better than or equal to the parallel fusion scheme analyzed in the literature. Numerical examples illustrate the global optimization by the selection of operating thresholds at the sensors

    Optimal Decision Fusion in Multiple Sensor Systems

    Get PDF
    The problem of optimal data fusion in the sense of the Neyman- Pearson (N-P) test in a centralized fusion center is considered. The fusion center receives data from various distributed sensors. Each sensor implements a N-P test individually and independently of the other sensors. Due to limitations in channel capacity, the sensors transmit their decision instead of raw data. In addition to their decisions, the sensors may transmit one or more bits of quality information. The optimal, in the N-P sense, decision scheme at the fusion center is derived and it is seen that an improvement in the performance of the system beyond that of the most reliable sensor is feasible, even without quality information, for a system of three or more sensors. If quality information bits are also available at the fusion center, the performance of the distributed decision scheme is comparable to that of the centralized N-P test. Several examples are provided and an algorithm for adjusting the threshold level at the fusion center is provided

    Optimal Distributed Decision Fusion

    Get PDF
    The problem of decision fusion in distributed sensor system is considered. Distributed sensors pass their decisions about the same hypotheses to a fusion center that combines them into a final decision. Assuming that the semor decisions are independent from each other conditioned on each hypothesis, we provide a general proof that the optimal decision scheme that maximizes the probability of detection at the fusion for fixed false alarm probability comists of a Neyman-Pearson test (or a randomized N-P test) at the fusion and likelihood-ratio tests at the sensors

    Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis

    Get PDF
    The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies

    Shear Lag Sutures: Improved Suture Repair through the use of Adhesives

    Get PDF
    Conventional surgical suture is mechanically limited by the ability of the suture to transfer load to tissue at suture anchor points. Sutures coated with adhesives can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening orthopaedic repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize strength. As a proof of concept, cyanoacrylate-coated sutures were used to perform a clinically relevant flexor digitorum profundus tendon repair in cadaver tissue. Even with this non-ideal adhesive, the maximum load resisted by repaired cadaveric canine flexor tendon increased by ∼ 17.0% compared to standard repairs without adhesive. To rapidly assess adhesive binding to tendon, we additionally developed a lap shear test method using bovine deep digital flexor tendons as the adherends. Further study is needed to develop a strongly adherent, compliant adhesive within the optimal design space described by the model

    A Comprehensive Corpus Callosum Segmentation Tool for Detecting Callosal Abnormalities and Genetic Associations from Multi Contrast MRIs

    Full text link
    Structural alterations of the midsagittal corpus callosum (midCC) have been associated with a wide range of brain disorders. The midCC is visible on most MRI contrasts and in many acquisitions with a limited field-of-view. Here, we present an automated tool for segmenting and assessing the shape of the midCC from T1w, T2w, and FLAIR images. We train a UNet on images from multiple public datasets to obtain midCC segmentations. A quality control algorithm is also built-in, trained on the midCC shape features. We calculate intraclass correlations (ICC) and average Dice scores in a test-retest dataset to assess segmentation reliability. We test our segmentation on poor quality and partial brain scans. We highlight the biological significance of our extracted features using data from over 40,000 individuals from the UK Biobank; we classify clinically defined shape abnormalities and perform genetic analyses

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of big data (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA\u27s activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Architectural and biochemical adaptations in skeletal muscle and bone following rotator cuff injury in a rat model

    Get PDF
    BACKGROUND: Injury to the rotator cuff can cause irreversible changes to the structure and function of the associated muscles and bones. The temporal progression and pathomechanisms associated with these adaptations are unclear. The purpose of this study was to investigate the time course of structural muscle and osseous changes in a rat model of a massive rotator cuff tear. METHODS: Supraspinatus and infraspinatus muscle architecture and biochemistry and humeral and scapular morphological parameters were measured three days, eight weeks, and sixteen weeks after dual tenotomy with and without chemical paralysis via botulinum toxin A (BTX). RESULTS: Muscle mass and physiological cross-sectional area increased over time in the age-matched control animals, decreased over time in the tenotomy+BTX group, and remained nearly the same in the tenotomy-alone group. Tenotomy+BTX led to increased extracellular collagen in the muscle. Changes in scapular bone morphology were observed in both experimental groups, consistent with reductions in load transmission across the joint. CONCLUSIONS: These data suggest that tenotomy alone interferes with normal age-related muscle growth. The addition of chemical paralysis yielded profound structural changes to the muscle and bone, potentially leading to impaired muscle function, increased muscle stiffness, and decreased bone strength. CLINICAL RELEVANCE: Structural musculoskeletal changes occur after tendon injury, and these changes are severely exacerbated with the addition of neuromuscular compromise
    corecore