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Abstract

Suture materials and surgical knot tying techniques have improved dramatically since their first 

use over five millennia ago. However, the approach remains limited by the ability of the suture to 

transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can 

improve mechanical load transfer beyond the range of performance of existing suture methods, 

thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of 

suitable adhesives were identified using a shear lag model. Examination of the design space for an 

optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize 

the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we 

evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 

4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket 

adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an 

albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-

concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor 

digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had 

significantly higher strength compared to the standard repair without adhesive. Notably, 

cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore 

not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair 
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properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the 

potential for the proposed approach to improve outcomes for treatments requiring suture fixation. 

Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal 

design space described by the model.
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1. Introduction

Sutures are an age-old technology: they have been used for wound closure for over 5 

millennia, dating back to sutures used in ancient Egypt, as described in the Edwin Smith 

Papyrus from 3000 – 1600 BC [1, 2, 3]. While many improvements in suture materials and 

intricate knot tying techniques have been introduced over the years, the core method of 

directly sewing tissues together remains a crude mechanical solution. Sutures typically work 

in pure tension along most of their length. Tension is transferred to the tissue only at anchor 

points (Figure 1). High stress concentrations at these anchor points can lead to sutures 

breaking or cutting through the surrounding tissue. This phenomenon limits the maximum 

force that can be transferred across the repair site. While current suturing techniques are 

sufficient to maintain the integrity of many surgical repairs, musculoskeletal tissue 

reconstruction (e.g., tendon and ligament repair) typically demands strong biomechanical 

resilience to accommodate activities of daily living without risking rupture. For example, 

repair-site elongation and rupture rates of up to 48% have been described after flexor tendon 

repair, even with modern suturing and rehabilitation protocols [4, 5, 6, 7]. Rotator cuff 

repairs, which require reattachment of materials with disparate mechanical properties 

(tendon and bone), have recently reported failure rates as high as 94% [8, 9, 10]. Improved 

suturing schemes would allow for the transfer of greater loads across the repair site, 

reducing rupture and gap formation between the repaired tissues and improving healing 

outcomes, not only by strengthening repairs but also by enabling more aggressive 

rehabilitation protocols. By holding the tissues together for longer time intervals, mechanical 

solutions that prevent gap formation and development could provide more time for the 

biological healing response to generate a strong, organized tissue instead of disorganized 

scar [5, 11, 12].

Here, a new approach is proposed to augment standard suturing technology. Conventional 

sutures have a relatively large surface area passing through the tendon that is currently not 

utilized for load transfer. We envision a modified suture with an adsorbed or covalently 

bound adhesive that tightly binds collagen along the suture’s length, thereby reducing stress 

concentrations and better distributing load (Figure 1). We hypothesized that adhesives along 

the length of the suture would transfer load more effectively than conventional suture 

without adhesive. This improvement in load transfer is expected to result in an improvement 

in overall repair construct mechanical properties. Note that achieving the full strength of an 

uninjured tendon is unnecessary, as tendons are over-designed and are typically able to 

accommodate many times more load than is applied physiologically [13, 14, 15]. We aim to 
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generate functional repairs that are sufficient to accommodate in vivo loads and enhanced 

rehabilitation protocols. We focus here on single stranded sutures or pseudomonofilament 

sutures, including multiple strands within an outer casing, because these are used surgically 

for flexor tendon repair [11].

In order to predict the ability of adhesive-coated sutures to improve load transfer, we 

employed a shear lag model [16, 17, 18, 19] of suture within a cylindrical tissue (e.g., a 

tendon). Using this model, we identified desirable adhesive mechanical properties to 

improve load transfer across a repair site. We then biomechanically tested sutures coated 

with adhesives to validate the model and experimentally assess the capacity to improve load 

transfer.

2. Materials and methods

2.1. Terminology

Throughout this paper, “suture” refers to the core strand of suture, “adhesive” refers to the 

adhesive layer, “assembly” and “adhesive-coated suture” refer to the combination of suture 

with adhesive surrounding it, and “repair” refers to the complete tissue repair, including 

several strands of adhesive-coated suture and a region of tissue in which these are 

embedded. Abbreviations and variables are described in Table 1.

2.2. Ex vivo surgical repair model

To experimentally assess the ability of adhesives to improve load transfer, a number of 

adhesive coatings were added to single pseudo-monofilament polycaprolactam 4-0 suture 

strands (Supramid, S. Jackson, Inc., Alexandria, VA) and inserted into tendon tissue prior to 

performing pullout tests. Single strands without knots were chosen to isolate the effects of 

the adhesive and mimic the mathematical model as closely as possible. The following 

adhesives were examined: highly flexible cyanoacrylates (Loctite 4903 and 4902, based on 

ethyl and octyl cyanoacrylate[20, 21]; Henkel Corporation, Düsseldorf, Germany), 

cyanoacrylate (Loctite QuickTite Instant Adhesive Gel, based on ethyl cyanoacrylate[22], 

Henkel Corporation, Düsseldorf, Germany), rubber cement (Elmer’s Rubber Cement; 

Elmer’s Products, Inc., Columbus, OH), rubber/gasket adhesive (1300 Scotch-Weld 

Neoprene High Performance Rubber & Gasket Adhesive; 3M, St. Paul, MN), BioGlue 

(CryoLife Inc., Kennesaw, GA), and polydopamine [23, 24] (Sigma Aldrich, St. Louis, 

MO). Henkel does not release the exact chemical composition of their products. Of these 

adhesives, only BioGlue is FDA approved for use inside the body. These commercially 

available adhesives were chosen solely to assess the concept proposed here, not to promote 

the use of any particular adhesive clinically. Loctite 4903 and 4902 have shear moduli of 

538 MPa and 399 MPa, respectively [25]. BioGlue, rubber cement, and rubber/gasket 

adhesives [26] have shear moduli on the order of 0.5 - 5 MPa [27, 28, 29]. Suture was 

passed through cadaveric canine hindpaw flexor digitorum profundus tendons using a 

French eye needle. All tendons tested in this study were from hindpaws of healthy female 

adult mongrel dogs from 20-30 kg in weight (Covance Research, Princeton, NJ), taken 

postmortem from an unrelated project. Canine intrasynovial flexor tendons have been used 

extensively by our group and others since the early 1960s as a reliable model of human 
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tendon repair; we expect the results from this model to be comparable to those that would be 

obtained from human flexor tendon reconstructions [5, 30, 31, 32, 33, 34, 35, 36]. Tendons 

had elliptical cross sections with major and minor radii approximately 3 mm and 1 mm, 

respectively. The tendon was first dissected away from surrounding tissue and a complete 

transection was made in Zone II [37] perpendicular to the long axis of the tendon. Suture 

was passed from the side of the tendon 10 mm from the site of transection toward the 

laceration interface. The suture was pulled through the tendon so that only a single suture 

strand remained within the tendon. In the adhesive-coated suture tests, the adhesive was 

injected onto the suture and the suture was pulled into place, dragging the adhesive into the 

tendon. Adhesive that accumulated on the side of the tendon was cleared with gauze soaked 

in phosphate buffered saline (PBS). The assembly within the tendon was wrapped in PBS-

soaked gauze in an airtight tube and then allowed to cure overnight at 4 °C before 

biomechanical testing. This curing procedure was chosen to ensure that the postmortem 

tissue ex vivo would not rot or deteriorate.

To assess the ability of adhesive to improve load transfer in a clinically relevant setting, 

cadaveric canine hindpaw flexor digitorum profundus tendons with Zone II lacerations [37] 

were repaired using an 8-strand Winters-Gelberman repair [11] (n = 11; Supramid 4-0 

suture; S. Jackson Inc., Alexandria, VA), as diagrammed in Figure 1 and described 

previously [38]. Control repairs without adhesive were compared to repairs with Loctite 

4903-coated suture. Loctite 4903 was chosen based on results of single suture pullout tests 

described above. All surgeries were performed by IK, an orthopaedic hand surgeon. For 

adhesive-augmented repairs, sutures were passed through the tendon following usual 

surgical technique, then for each suture pass, Loctite 4903 was injected onto the suture 

strands using a syringe immediately prior to pulling the adhesive-coated suture into its final 

position. The outside of the tendon was cleaned with PBS-soaked gauze to remove any 

excess adhesive. Repairs were completed with a continuous, nonlocking peripheral stitch 

using 5-0 nylon suture, as performed clinically [4, 11, 39, 40]. The repaired tendon and 

distal phalangeal bone were wrapped in PBS-soaked gauze in an airtight tube and then 

allowed to cure overnight at 4 °C to prevent tissue deterioration before biomechanical 

testing.

2.3. Biomechanical testing

Samples were brought to 37 °C prior to biomechanical testing. For single suture strand 

pullout tests, any suture and adhesive outside of the lateral tendon was first dissected away. 

This ensured that the effect was due to adhesive along the length of the suture instead of 

adhesive accumulated at the suture entrance point. Samples were then tested in uniaxial 

tension on a materials testing frame (ElectroPuls E1000; Instron Corp., Norwood, MA, 

chosen because of a low noise load cell suitable for distinguishing milli-Newton level 

forces). The tendon was clamped in a stationary grip so 15 mm of tendon length was 

exposed. Suture was carefully placed in a jig consisting of a low friction spool and a clamp 

grip, which was pulled upward at 0.3 mm/s to apply tension to the suture. The gauge length 

between the tendon and suture grips was 8.5 cm for all samples at the start of the test. 

Pullout (failure) force of single adhesive-coated suture strands within tendon tissue were 

determined from the force-elongation curves.
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Clinical repairs of cadaveric flexor digitorum profundus tendons were tested as described 

previously [41, 42, 43, 36]. After preconditioning, samples were pulled in uniaxial tension 

using a material testing machine (5866; Instron Corp., Norwood, MA, chosen because of a 

high capacity load cell) at 0.3 mm/s until failure. Strain was determined optically to 

determine when a physiologically relevant 2 mm gap formed between the repaired tendon 

ends. Immediately prior to testing, tendons were stained with a speckle pattern of freshly 

prepared Verhoeff stain to provide a surface texture for optical tracking. Elongation 

measurements from the material testing machine were synced with optical recordings from a 

high resolution camera at a frame rate of 4 Hz (illunis, Minnetonka, MN), similar to 

described previously [44]. Optical tracking of points proximal and distal to the laceration 

interface enabled accurate determination of local tissue strain. From the force-elongation 

curves, maximum force, force required to create a 2 mm gap in the repair (a clinically 

relevant measure of repair strength [5]), and stiffness (slope of the linear region) were 

determined. From the force-strain curves, strain at 20 N force (approximating strains at 

physiologically relevant load levels [45, 46]) and resilience (area under the curve until yield) 

were determined.

2.4. Statistics

Statistical analysis for all experiments was performed by non-parametric Wilcoxon rank-

sum using MATLAB. Statistical significance was set at p < 0.05 unless otherwise noted.

3. Theory

3.1. Shear lag model

A shear lag model was studied to identify adhesives with desirable properties for suture 

repair (Appendix A). The model predicted load sharing between the sutures and an idealized 

isotropic, homogeneous repaired tendon.

The load Ps on an assembly that would cause adhesive failure was estimated from the 

following expression for the shear stress τ (x) as a function of the position, x, along a suture 

(Figure 2):

(1)

where  is the average shear stress; L is the suture purchase length (i.e., the 

length of the straight section of the suture within the connected section of the tendon); Pk is 

the resultant normal force in the suture at the anchor point (the knot at x = L); Ps is the 

normal force in the suture at the interface (x = 0); and χ and the characteristic (inverse) 

length scale βs relate to the geometry and material properties:

(2)
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(3)

where , in which  are, respectively, the tendon radius and 

adhesive thickness normalized by the suture radius rs; and  are, respectively, 

the suture elastic modulus and adhesive shear modulus normalized by the tendon elastic 

modulus Et. The peak shear stress in the adhesive occurs at the interface x = 0 (Figure 3). 

Equating this to the adhesive failure shear stress, τfail, and solving (1) for the case of Pk = 0 

yields:

(4)

Note that τfail could be limited by failure at the interfaces with adherends (i.e., suture or 

surrounding tissue) or failure within the adherends themselves. This solution is nearly 

bilinear, with two asymptotes (Figure 4, Figure 5):

(5)

(6)

For a given suture, the first limit (L → ∞) shows that the force a suture can carry increases 

monotonically with decreasing adhesive shear modulus . Below a critical adhesive shear 

modulus, however, the second limit (Ga → 0) shows that a cut-off exists that depends upon 

the suture length. Therefore, the optimum strength involves as compliant of an adhesive 

provided that the suture length is sufficient:

(7)

As a test case for a clinically relevant suture repair scenario, the model was analyzed using 

realistic tendon and suture material properties and a variety of realistic suture lengths and 

adhesive properties for a typical flexor digitorum profundus clinical repair: L = 13 mm, rt = 

2 mm, Et = 200 MPa, ta = 100 µm, rs = 100 µm, and Es = 2 GPa [38, 47, 48, 49, 50, 51, 52].

4. Results

4.1. Shear lag model analysis

Shear lag modeling predicted that adhesive coatings on sutures would improve load transfer 

compared to conventional sutures for a certain range of properties (white band, Figure 4). 

Mechanically desirable adhesives would be compliant in shear while maintaining high 

binding and shear strengths. Compliant adhesives allow greater deformation, thereby 
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distributing loads over a larger length than stiff adhesives (Figure 3a). This distribution 

reduces stress concentrations at the suture anchor points, leading to an adhesive-coated 

suture assembly that carries greater load before failure. In addition to adhesive properties, 

the maximum shear stress in the adhesive is minimized by balancing the adherends [53] (i.e., 

tissue and suture) so that . These adherends are not balanced with current Supramid 

surgical suture and tendon. When adherends (tendon and suture) are balanced by assuming 

38-fold stiffer suture, the peak stress is 8.5-fold lower than in conventional suture repair

(Figure 3b).

Shear lag modeling also predicted that maximum load transfer would increase with 

increasing adhesive-coated suture length. However, varying the ratio of suture length to 

Lintersect demonstrates that adhesive-coated sutures approach the limit for maximum load 

transferred when the suture length, L, is 2-3 times Lintersect (Figure 5a). The length of suture 

used is limited surgically by the particular tissue being repaired. Suture length of 13 mm was 

used in the model to make results relevant to flexor digitorum profundus tendon repair 

(Figure 5b) [39]. A contour map of maximum load transfer given various adhesive 

properties was generated using this length (Figure 4). Properties of several real materials 

were then overlaid on this contour map to identify promising candidate materials. Only a 

small fraction of the material classes shown are relevant materials; the remainder are 

included for comparison as is standard with an Ashby plot, and to highlight the importance 

of appropriate adhesive material selection. Assuming a compliant adhesive (Ga = 100 kPa) 

with a strong shear strength (τ = 10 MPa) and the current clinical suture length of 13 mm, 

maximum load transfer per strand would approach 70 N of force. For the typical 4- and 8-

strand methods used in flexor tendon repair, this would result in theoretical improvements of 

up to 280 N and 560 N, ~4-fold and ~8-fold improvements over current methods, 

respectively.

4.2. Ex vivo experimental results

Biomechanical tests of single strands of adhesive-coated suture within tendon tissue 

supported the model prediction that adhesive coatings can increase force required to pull out 

a suture. Loctite 4903, a “flexible” cyanoacrylate, improved the maximum load to pull out a 

single suture strand in tendon from 0.076 N (± 0.104 N standard deviation) without adhesive 

to 3.24 N (± 2.11 N; p = 3.11 ∗ 10−4) with an adhesive-coated suture strand (Figure 6). The 

more compliant adhesives tested did not meaningfully increase the maximum load necessary 

to pull out the suture, likely because of poor binding to suture and tissue.

The strongest single strands of adhesive-coated suture in tendon were further evaluated in a 

clinically relevant 8-stranded cadaveric canine flexor tendon repair. Since the results for 

Quicktite, Loctite 4902, and Loctite 4903 were comparable, the choice among them was 

arbitrary from the mechanics perspective. In the clinically relevant ex vivo repairs, Loctite 

4903-coated sutures increased maximum load transfer by 17.0% (Control = 72.7 ± 11.3 N; 

Loctite 4903 = 85.0 ± 8.6 N; p = 0.009) and load to create a clinically relevant 2 mm gap by 

17.5% (Control = 59.2 ± 8.8 N; Loctite 4903 = 69.5 ± 11.2 N; p = 0.032) compared to 

standard 8-stranded suture repairs without adhesive coatings (Figure 7; n = 11 per group). 

Resilience, stiffness, and strain at 20 N applied force did not change significantly (Table 2).
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5. Discussion

Although adhesives, especially cyanoacrylates [58], have been used for decades in surgical 

repairs to replace or augment suture for closing the skin and other tissues [59, 60], their 

application has been almost entirely limited to the interface between the aligned tissues. The 

application of adhesive to the lateral faces of sutures has never been reported for a tissue that 

works in tension. To our knowledge, only one previous study used adhesive-soaked sutures, 

reporting an increase in re-bonding strength of repaired meniscal tissue under compression 

compared to either suture alone or adhesive alone [61]. We hypothesized that the load 

distribution along sutures and the load tolerance of the repaired tissues could be optimized 

using a mechanical model that predicts load transfer as a function of adhesive mechanical 

properties. Modeling and ex vivo experimental results demonstrated that adhesive-coated 

sutures have the potential to improve the strength of tensile tissue repairs, especially with the 

development of adhesives with optimal mechanical properties.

The modeling indicated that adhesives that are compliant in shear facilitate load transfer 

from the suture to the tendon by lowering stress concentrations (Figure 3). This strategy is 

somewhat analogous to the tendon enthesis, where a compliant interfacial zone between 

tendon and bone [62, 63, 64] has been shown to optimize stress transfer and is hypothesized 

to toughen the interface [65]. Similarly, a collagen-binding adhesive that directly attaches to 

the suture via a small compliant layer in between the suture and the collagen would be 

expected to better distribute load to minimize stress concentrations, enabling more effective 

load transfer across the repair. Finally, we note that compliant interfaces between fibers and 

matrix are associated with additional modes of toughening through crack deflection [66]; 

this can lead to toughening of the repair as a whole through decreased sensitivity to flaws 

that might otherwise lead to failure [67, 68].

Adhesives with a broad range of physical properties are expected to improve load repair 

strength. When the derived isoclines are plotted over the properties of real materials, as in a 

standard Ashby plot [55, 54, 56], the model highlights a range of potential materials with 

appropriate mechanical properties (Figure 4). Many of these are not biocompatible, but 

elastomers such as polychloroprene, polyurethane rubber, and natural rubber do have 

appropriate shear moduli and shear strength to be used as base materials for adhesive 

development. Some biological materials, e.g., those based on elastin, could also be valuable 

for creating bio-adhesives. Note that the shear strength used in this model may be limited by 

either bulk failure within the adhesive material or interfacial failure between the adhesive 

and adherends (i.e., suture and tendon). Therefore, both the bulk adhesive mechanical 

properties and the strength of adhesion are crucial factors for successful application of this 

approach.

The proof-of-concept experiments performed here demonstrate substantial improvements in 

load transfer across single strand pullout and clinically relevant tendon repairs, even though 

Loctite 4903 used in these tests is a stiff cyanoacrylate that is far from ideal according to the 

shear lag model. The 3.24 N ± 2.11 N failure load found experimentally for a single strand 

of cyanoacrylate-coated suture within tendon tissue (Figure 6) very closely matches the 

predicted maximum load for cyanoacrylates from the shear lag model (Figure 4). The 17% 

Linderman et al. Page 8

Acta Biomater. Author manuscript; available in PMC 2016 September 01.



improvement in load tolerance for a complete 8-stranded repair (Figure 7), amounting to 

improvement of 10–15 N, could substantially decrease rupture rate in flexor tendon repairs. 

The expected load transfer for clinically relevant repairs comes partially from the shear lag 

load transfer through adhesive and partially from the basal strength of a suture repair with 

knots. This 17% improvement in load transfer across a clinically relevant repair represents 

47% of the additive improvement expected for an 8-strand repair based on the single strand 

experiments. We hypothesize that this discrepancy is due to imbalanced load sharing among 

strands in the surgical repair. Perfectly balanced repairs are not possible even for the highly 

trained orthopaedic hand surgeons who performed the procedures in this study because they 

require that (i) all strands have the exact same tension applied to them when surgical knots 

are tied, (ii) the strands be perfectly aligned with the longitudinal axis of the tendon, and (iii) 

the tendon be loaded perfectly longitudinally. Therefore, some strands will carry more load 

than others in clinically relevant repairs, reducing the maximum load transfer.

The compliant adhesives tested here did not substantially improve load transfer as 

anticipated by overlaying their bulk material properties on the shear lag model (Figure 6). 

This discrepancy highlights the importance of compatibility between the different materials 

(i.e., suture, adhesive, and tendon) and the resulting interfacial shear strengths. Overall shear 

strength could be limited by any of three factors: (i) the interfacial shear strength between 

suture and adhesive, (ii) the interfacial shear strength between adhesive and surrounding 

tissue, and (iii) the bulk shear strength of the adhesive material. This study experimentally 

evaluated the model using several commercially available adhesives without prior 

knowledge of their binding strength to Supramid (polycaprolactam) sutures or tendon tissue. 

Notably, these commercially available adhesives were not optimized to adhere to suture and 

tissue, whereas strength parameters used in the model represented an optimal scenario where 

the interfacial shear strengths were at least as strong as bulk shear strength of the adhesives. 

Poor binding strength of these commercially available adhesives to suture or tissue might 

have limited the failure shear stress and efficacy for load transfer. While we tested Supramid 

sutures because of their surgical use in flexor tendon repair, different suture materials may 

have improved compatibility with particular adhesives. In addition, multifilament sutures 

have increased surface area for adhesive integration and binding, serving as a potential 

mechanism to increase interfacial failure shear stress.

Since adhesives were simply injected onto the suture surface before the suture was pulled 

into tissue, the compliant adhesives may have sheared off of the suture when pulled into 

place, before adequately curing could take place. One limitation of this experimental 

validation is the lack of suitable visualization of adhesive within the tissue along the length 

of the suture. We hope to overcome this limitation in future work. The modeling performed 

here is applicable even for thin adhesive layers compared to the tissue and suture width. 

Furthermore, the methods described above ensure that the effects seen experimentally were 

due to adhesive along the length of the suture instead of adhesive at the entry point into 

tissue (Figure 6).

Despite these limitations, the single-strand pullout results for cyanoacrylates were accurately 

predicted by the mathematical model. This is possibly because Henkel publishes lap shear 

strength for cyanoacrylates instead of block shear strength, so the shear data includes 
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interfacial adhesive strength. Additionally, cyanoacrylates are highly reactive compounds 

that may generate sufficient interfacial adhesive strength via covalent bonding with suture 

and with tendon that they were instead limited by failure within the adhesive bulk.

The promising mechanical improvement seen in these proof-of-concept studies with sub-

optimal adhesives is still an order of magnitude below the predicted improvement that could 

be achieved with an optimal adhesive. While current repairs are not strong enough to sustain 

physiologic loading in all patients, even modest mechanical improvements are expected to 

make a substantial difference clinically. Therefore, we anticipate this technology will be 

useful clinically even if we only see half of the maximum expected improvement based on 

single-strand testing for a specifically engineered compliant adhesive material. Note that we 

do not suggest the specific adhesives tested in this proof-of-concept study be used clinically. 

Rather, these results provide a foundation for the further development of adhesives with the 

desirable mechanical properties predicted here, material compatibility with sutures and 

tissue, delivery methods that mitigate adhesives shearing off of suture, and appropriate 

biocompatibility for use in patients.

This shear lag model describes the importance of adhesive mechanical properties for 

creating a successful adhesive-coated suture; however, most currently used adhesives are not 

designed for this purpose. Specifically engineering an adhesive material to bind suture and 

surrounding tissue tightly, while maintaining compliance to shear stress, could lead to 

substantially improved adhesive-coated sutures. In addition to having appropriate 

mechanical properties once in place, an ideal adhesive-coated suture should be inert for 

storage and surgical handling before it is placed into the body. We envision several potential 

approaches to generate adhesive coatings that only activate when in place within tissue.

The shear lag model used in the current study employed several simplifying assumptions. 

First, shear lag models treat the displacement field as one-dimensional. Only displacements 

along the long axis of the tendon/suture were considered. This approximation has, however, 

proven effective for a broad range of fibrous composites [17, 69, 70]. Second, the adhesive 

layer was considered to be very thin. For a thicker layer, deformation of the adhesive must 

be considered explicitly, accounting for both axial displacements varying through the 

thickness as well as radial displacements, especially for highly compliant adhesives. Third, 

the stress field in the suture was assumed to be independent of radial position, an 

approximation valid only for relatively stiff sutures. Because non-absorbable sutures used in 

tendon repair can be assumed rigid in tension in the range of the failure forces of the repair, 

this approximation should be acceptable, especially for estimates of load transfer. Despite 

limitations listed above, this simplified model of suture-tendon interaction allows for 

adequate determination of the design space for an adhesive-coated suture for tissue repair. 

When used in combination with an Ashby plot showing real material properties [55], this 

model can identify promising base materials for adhesive-coated suture development.

6. Conclusion

Strengthening surgical repairs should lead to improved healing outcomes for mechanically 

sensitive tissues, such as tendon. Our models and proof-of-concept experiments suggest that 
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coating sutures with adhesives that are appropriately designed hold promise for achieving 

repairs that have higher levels of resistance to gap formation and catastrophic failure. While 

Loctite 4903 shows promising results that would be valuable clinically, it is far from an 

ideal adhesive according to the model due to its high shear modulus. We intend to develop 

biocompatible adhesives with optimized mechanical and chemical properties to further 

increase load transfer and improve clinical repairs for tendon, ligament, and other tissue 

injuries.

7. Acknowledgements

This study was supported by the National Institutes of Health (NIH): U01 EB016422 (to ST and GMG), R01 
AR062947 (to ST and RHG), T32 AR060719 (to SWL) and T32 GM007200 (to Medical Scientist Training 
Program, Washington University in St. Louis). Loctite 4902 and 4903 were gifts from Henkel Corporation 
(Düsseldorf, Germany).

Appendix A: Shear lag analysis of an adhesive suture

The shear lag model applied was analogous to the Volkersen [16] and Cox [17] double lap 

joint solutions, and to the Nairn [18] axisymmetric solution (cf. Appendix B). We present a 

derivation here to highlight our approximations and how adhesive properties arise in the 

final expression.

The model was based upon the free body diagram in Figure A.8) and the following 

assumptions: (a) the suture, adhesive, and tendon are linear elastic materials; (b) viscous 

effects are negligible; and (c) radial displacements, strains, and stresses are small. The latter 

is appropriate for a thin adhesive layer. These validity of these assumptions has been 

established in composites with short [69, 17] and long fibers (e.g., Gibson [70]), and by 

comparison to solutions in which these assumptions were not made [71, 72]. We note as 

well that, although adhesives often exhibit nonlinearity and viscoelasticity, the linear 

analysis is adequate and useful for the target design range in which the adhesive is not close 

to failure.

The differential equation governing the normal stress in the suture at position x is [17, 18]:

(A. 1)

where  is normal stress in the suture normalized by the stress  at x = 0, and βs 

and χ are defined in the main text. Solving and applying the boundary condition  at 

the interface between repaired tendon ends and  at the anchor or knot yields:

(A.2)

Inserting this into the equilibrium equation yields an expression for the shear stress τ (x) 

(Equation 1).
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Note that, as with lap joints (e.g. [53]), parametric analysis of Equation 1 confirmed that 

peak stress is minimized if the inner and outer adherends (tendon and suture) are “balanced” 

so that  (Figure 3b). This is not the case for current Supramid surgical suture and 

tendon. Balancing requires a 38-fold stiffer suture, and would reduce the peak stress by a 

factor of 8.5 (assuming geometry and material properties used in the main text).

Appendix B: Derivation from Nairn’s (1997) general, optimized shear lag 

solution

Nairn [18] presented a general shear lag solution for n concentric, transversely isotropic 

cylinders that sustain an average axial stress of σ0. We verify in this appendix that, for the 

case of n = 3 an expression analogous to that of Appendix A can be derived from this 

solution. Nairn’s governing equation for the interfacial shear stress τrz (r) at suture/adhesive 

interface is:

(B.1)

where  is the shear modulus of the suture normalized by the elastic modulus of the tendon 

and all other variables are as defined in Appendix A. For the adhesive/tendon interface,

(B.

2)

where  is the shear modulus of the tendon normalized by the elastic modulus of the 

tendon.

We model the case of a thin adhesive layer ( ) that is compliant compared to the suture 

and tendon ( ). We also assume that the shear stress to be 

uniform throughout the adhesive layer, as is reasonable for a thin layer. Thus, 

.

Making the two assumptions noted above and rewriting the above equations in the form

yields:

(B.3)

which is equal to the expression in Equation (2) for .
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Figure 1. 
An 8-stranded Winters-Gelberman suture repair technique is shown for human flexor 

digitorum profundus tendon repair [11]. Red shading indicates location of load transfer. 

Current suturing techniques generate stress concentrations at anchor points where the suture 

bends within tissue. Adhesive-coated sutures could distribute that load transfer along the 

entire length of the suture, reducing peak stresses and improving overall repair construct 

mechanics.
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Figure 2. 
Diagram of adhesive-coated suture assembly within a cylindrical tissue, such as tendon, 

used to conduct shear lag analysis. Ps is the tensile load carried by the suture at the interface 

between repaired tissues (i.e., at x = 0). Pk is the load at an anchor point or knot, where the 

suture bends within the tissue (x = L). This load, when too high, leads to the assembly 

cutting through surrounding tissue and to rupture of the repair.
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Figure 3. 
Shear stress vs. position along the length of a suture is shown. (A) The peak shear stress 

decreases as the adhesive shear modulus decreases because compliant adhesives distribute 

loads over a longer distance than stiffer adhesives. (B) A typical repair with Supramid or 

other sutures is unbalanced in the shear lag sense (i.e., , orange line, Ga = 1 GPa), 

resulting in higher peak stresses. If a 38x stiffer suture were available to balance the 

adherends (black line, still using Ga = 1 GPa), the peak stress would drop by a factor of 8.5. 

In these calculations Pk = 0 N, so that all of the load carried by the suture was transferred to 

the surrounding tissue via the adhesive.

Linderman et al. Page 19

Acta Biomater. Author manuscript; available in PMC 2016 September 01.



Figure 4. 
Contour map of maximum load transferred across the repair by an adhesive-coated suture 

strand, calculated from a wide array of theoretical adhesive shear moduli and adhesive 

failure shear stresses (i.e., strengths) given properties described in the methods, and overlaid 

with real material properties for several material types [25, 26, 27, 28, 54, 55, 56]. 

Maximum load transfer isoclines were normalized by the strength of healthy human flexor 

tendons (Ptendon ≈ 1000 N) [57]. Maximum load transfer occurred with an infinitely 

compliant and infinitely strong adhesive, toward the upper left corner of this contour plot. 

Current flexor tendon repairs carry approximately 10 N per suture strand, so relevant 

adhesive coatings would have failure loads above this level. Adhesive mechanical properties 

that are not expected to improve load transfer are shaded red (lower portion). Note that the 

suture strand itself breaks above approximately 15.5 N for Supramid 4-0 or 23.5 N for 

Supramid 3-0 suture [38], so adhesive failure loads above this level would not further 

improve load transfer (shaded green, upper portion). Also note that shear modulus and 

failure shear stress are related for a given real material, so not all theoretical combinations 

are realistic.
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Figure 5. 
Increasing suture length increases maximum load carried by assembly, i.e., load causing 

adhesive to fail, only until a point. Above a transitional suture length, load capacity is 

governed by an asymptote independent of suture length. (A) Maximum load carried by an 

assembly, Pmax, as a function of suture length, L, with respect to the length Lintersect. 

Maximum load is normalized by the maximum load transferred by an infinitely long suture, 

Pmax(∞). At L = Lintersect, the maximum load is 76.0% of the asymptotic maximum load for 

an infinitely long suture. Note that this is an invariant curve that is true for any combination 

of ta, Ga, Es, rs, Et, and rt that yields a particular value of Lintersect. (B) Maximum load 

carried by an assembly as a function of suture length for particular suture, tendon, and 

adhesive material and geometric properties relevant to flexor tendon repair. Here the 

adhesive failure shear stress τfail = 10 MPa, adhesive shear modulus Ga = 100 kPa, adhesive 

thickness ta = 0.1 mm, and Pk = 0 N. Current suture length used in flexor tendon repair is 13 

mm into each tendon end, as denoted by the dashed line.

Linderman et al. Page 21

Acta Biomater. Author manuscript; available in PMC 2016 September 01.



Figure 6. 
(A) Maximum loads resisted by single 4-0 Supramid suture strands coated with nothing

(traditional suture), CryoLife BioGlue, Dopamine, Elmer’s rubber cement, 3M rubber and

gasket adhesive 1300 (neoprene), Loctite Quicktite (cyanoacrylate), Loctite 4902 or Loctite

4903 (flexible cyanoacrylates) in cadaveric canine flexor digitorum profundus tendon. The

middle line within the box plots represents the median, the outer edges denote the 25

percentile and 75 percentile samples, and the whiskers extend to the extreme data points.

Outliers are denoted by (+). Asterisks denote statistically significant differences compared to

traditional suture (* p < 0.05, ** p < 0.01). (B) Schematic of testing setup for single strand

adhesive-coated suture pullout from tendon. (C) Representative force-elongation curve for

Loctite 4903-coated suture pullout.
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Figure 7. 
Tendon repair load tolerance with and without adhesive. (A) Schematic of testing setup for 

clinically relevant repairs with adhesive-coated suture. (B) The plot shows load creating a 2 

mm gap and maximum load for a cadaveric canine flexor digitorum profundus tendon repair 

using standard clinical surgical technique (8 stranded repair with 4-0 Supramid suture, 

green) compared with the same repair style where suture was coated with Loctite 4903 

(cyanoacrylate adhesive, blue with hash marks). The middle line within the box plots 

represents the median, the outer edges denote the 25 percentile and 75 percentile samples, 

and the whiskers extend to the extreme data points. Outliers are denoted by (+). Overbars 

and asterisks denote statistically significant differences (* p < 0.05, ** p < 0.01). (C) 

Representative force-strain curve for 8-stranded repair with Loctite 4903-coated suture.
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Figure A.8. 
Free body diagram showing an axisymmetric model of adhesive-coated suture within a 

cylindrical tendon tissue. Simultaneously analyzing a section of the repair (left) and each 

component independently (i.e., suture, adhesive, and tendon; right) allows derivation of a 

shear lag model to estimate shear stress within the adhesive. Note that this model reduces to 

a one-dimensional set of equations along the x-axis.
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Table 1

Abbreviations and variables used throughout the manuscript.

PBS Phosphate buffered saline x position along suture

τ(x) shear stress in the adhesive layer τ ave average shear stress

τfail failure shear stress of adhesive-coated suture
σ
‒

s(x)
normal stress in suture normalized by normal stress at x = 0

Es suture elastic modulus Es
∗ suture elastic modulus normalized by tendon elastic modulus

Et tendon elastic modulus Ga adhesive shear modulus

Ga
∗ adhesive shear modulus normalized by tendon elastic 

modulus

L suture purchase length Lintersect suture length where asymptotic limits for load
transfer intersect

Ps normal force in suture at the interface, x = 0 Pk resultant normal force in suture at the anchor point

rs suture radius rt
∗ tendon radius normalized by suture radius

r t tendon radius ρt
∗ effective radius of tendon, normalized by suture radius

ta adhesive thickness ta
∗ adhesive thickness normalized by suture radius

β s characteristic (inverse) length scale
related to geometry and material properties

χ variable related to geometry and material properties
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Table 2

Repair resilience, stiffness, and strain at 20 N load are shown for a cadaveric canine flexor digitorum 

profundus tendon repair using standard clinical surgical technique (8 stranded repair with 4-0 Supramid 

suture) compared with the same repair style where suture was coated with Loctite 4903 (cyanoacrylate 

adhesive). Modified resilience shown here is calculated from the force-strain curve.

Resilience Stiffness Strain at 20 N

Repair with Loctite 4903-coated suture 9.12 ± 2.46 N 27.2 ± 4.4 N/mm 8.00 ± 1.36%

Control repair (no adhesive) 7.39 ± 2.22 N 24.0 ± 7.0 N/mm 8.81 ± 2.91%

p-value 0.108 0.251 0.438
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