6,315 research outputs found

    The near-IR counterpart of IGR J17480-2446 in Terzan 5

    Get PDF
    Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observations of the core of Terzan 5 in the near-IR bands with the ESO-VLT NAOS-CONICA instrument. We present the discovery of the likely counterpart in the Ks band and discuss its properties both in outburst and in quiescence. Archival HST observations are used to extend our discussion to the optical bands. The source is located at the blue edge of the turn-off area in the color-magnitude diagram of the cluster. Its luminosity increase from quiescence to outburst, by a factor 2.5, allows us to discuss the nature of the donor star in the context of the double stellar generation population of Terzan 5 by using recent stellar evolution models.Comment: 7 pages, 4 figure

    FK Comae Berenices, King of Spin: The COCOA-PUFS Project

    Get PDF
    COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV (120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph, but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of time scales, over all wavelengths, during the week-long main campaign, including a large X-ray flare; "super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV 139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm (10,000-30,000 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences, and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution.Comment: to be published in ApJ

    Red Giant stars in the Large Magellanic Cloud clusters

    Full text link
    We present deep J,H,Ks photometry and accurate Color Magnitude Diagrams down to K ~18.5, for a sample of 13 globular clusters in the Large Magellanic Cloud. This data set combined with the previous sample of 6 clusters published by our group gives the opportunity to study the properties of giant stars in clusters with different ages (ranging from ~80 Myr up to ~3.5 Gyr). Quantitative estimates of star population ratios (by number and luminosity) in the Asymptotic Giant Branch, the Red Giant Branch and the He-clump, have been obtained and compared with theoretical models in the framework of probing the so-called phase transitions. The AGB contribution to the total luminosity starts to be significant at ~200 Myr and reaches its maximum at ~5-600 Myr, when the RGB Phase Transition is starting. At ~900 Myr the full developing of an extended and well populated RGB has been completed. Both the occurrence of the AGB and RGB Phase Transitions are sharp events, lasting a few hundreds Myr only. These empirical results agree very well with the theoretical predictions of simple stellar population models based on canonical tracks and the fuel-consumption approach.Comment: 32 pages, 11 figures, accepted to Ap

    Polarized kilonovae from black hole-neutron star mergers

    Get PDF
    We predict linear polarization for a radioactively powered kilonova following the merger of a black hole and a neutron star. Specifically, we perform 3D Monte Carlo radiative transfer simulations for two different models, both featuring a lanthanide-rich dynamical ejecta component from numerical-relativity simulations while only one including an additional lanthanide-free disc-wind component. We calculate polarization spectra for nine different orientations at 1.5, 2.5, and 3.5 d after the merger and in the 0.1-2 μ wavelength range. We find that both models are polarized at a detectable level 1.5 d after the merger while show negligible levels thereafter. The polarization spectra of the two models are significantly different. The model lacking a disc wind shows no polarization in the optical, while a signal increasing at longer wavelengths and reaching ∼ 1-6 per cent at 2 μ depending on the orientation. The model with a disc-wind component, instead, features a characteristic 'double-peak' polarization spectrum with one peak in the optical and the other in the infrared. Polarimetric observations of future events will shed light on the debated neutron richness of the disc-wind component. The detection of optical polarization would unambiguously reveal the presence of a lanthanide-free disc-wind component, while polarization increasing from zero in the optical to a peak in the infrared would suggest a lanthanide-rich composition for the whole ejecta. Future polarimetric campaigns should prioritize observations in the first ∼48 h and in the 0.5-2 μ range, where polarization is strongest, but also explore shorter wavelengths/later times where no signal is expected from the kilonova and the interstellar polarization can be safely estimated

    The Blue Straggler population in the globular cluster M53 (NGC5024): a combined HST, LBT, CFHT study

    Full text link
    We used a proper combination of multiband high-resolution and wide field multi-wavelength observations collected at three different telescopes (HST, LBT and CFHT) to probe Blue Straggler Star (BSS) populations in the globular cluster M53. Almost 200 BSS have been identified over the entire cluster extension. The radial distribution of these stars has been found to be bimodal (similarly to that of several other clusters) with a prominent dip at ~60'' (~2 r_c) from the cluster center. This value turns out to be a factor of two smaller than the radius of avoidance (r_avoid, the radius within which all the stars of ~1.2 M_sun have sunk to the core because of dynamical friction effects in an Hubble time). While in most of the clusters with a bimodal BSS radial distribution, r_avoid has been found to be located in the region of the observed minimum, this is the second case (after NGC6388) where this discrepancy is noted. This evidence suggests that in a few clusters the dynamical friction seems to be somehow less efficient than expected. We have also used this data base to construct the radial star density profile of the cluster: this is the most extended and accurate radial profile ever published for this cluster, including detailed star counts in the very inner region. The star density profile is reproduced by a standard King Model with an extended core (~25'') and a modest value of the concentration parameter (c=1.58). A deviation from the model is noted in the most external region of the cluster (at r>6.5' from the center). This feature needs to be further investigated in order to address the possible presence of a tidal tail in this cluster.Comment: 25 pages, 9 figures, accepted for publication on Ap

    Reliability of 2D ultrasound imaging associated with transient ShearWave Elastography method to analyze spastic gastrocnemius medialis muscle architecture and viscoelastic properties

    Get PDF
    PurposeThe aim of the study was to assess the reliability of pennation angle (PA) and muscle thickness (MT) 2D measurements and of shear elastic modulus measurement, using ultrasound imaging (US). Those measurements were made on spastic gastrocnemius medialis muscle at rest and at maximal passive stretching, in post-stroke hemiplegic patients. The paretic side measurements were compared to non-paretic side.Material and methodsFourteen patients took part in 2 inter-session reliability experiments, realized at a 7 days interval by the same operator. The Aixplorer® Supersonic US scanner with the transient ShearWave Elastography (SWE) software was used. The stretching experiments were made manually and controlled by a goniometer.ResultsThe reliability of the 2D measurements was good. The coefficient of variation (CV) was 6.30% for MT measurement at rest, 6.40% and 8.26% for PA at rest and at maximal passive stretching respectively. The reliability of the shear elastic modulus measurement in the sagittal plane was good only at rest with a CV of 9.86%, versus 40.58% at stretching. None of the shear elastic modulus measurements in the axial plane were good. At rest, MT and PA were weaker on the paretic side (14.25±3.12mm and 17.32±5.10°) versus non-paretic side (16.30±3.19mm and 21.08±5.05°) (P<0.0001 and P=0.006). At rest, there was a small difference in the shear elastic modulus between the paretic side and the non-paretic side (5.40±1.67kPa versus 6.20±2.18kPa, P=0.041).DiscussionThis is the first description of muscle spastic structure using SWE with Supersonic Shear Imaging. 2D US associated with SWE shows promise in terms of muscular atrophy quantification and muscle histological quality assessment. These structural properties reflect some of the functional abilities regardless of motor control. It should enable further research on therapies, which impact muscle tissue quality, such as botulinum neurotoxin injections

    Infrared and X-ray variability of the transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report on observations aimed at searching for flux variations from the proposed IR counterpart of the Anomalous X-ray Pulsar XTE J1810-197. These data, obtained in March 2004 with the adaptive optics camera NAOS-CONICA at the ESO VLT, show that the candidate proposed by Israel et al. (2004) was fainter by Delta H=0.7+/-0.2 and Delta Ks=0.5+/-0.1 with respect to October 2003, confirming it as the IR counterpart of XTE J1810-197. We also report on an XMM-Newton observation carried out the day before the VLT observations. The 0.5-10 keV absorbed flux of the source was 2.2x10^-11 erg/s/cm^2, which is less by a factor of about two compared to the previous XMM-Newton observation on September 2003. Therefore, we conclude that a similar flux decrease took place in the X-ray and IR bands. We briefly discuss these results in the framework of the proposed mechanism(s) responsible for the IR variable emission of Anomalous X-ray Pulsars.Comment: accepted by A&A Letter

    The structural properties and star formation history of Leo T from deep LBT photometry

    Full text link
    We present deep, wide-field g and r photometry of the transition type dwarf galaxy Leo T, obtained with the blue arm of the Large Binocular Telescope. The data confirm the presence of both very young (5 Gyr) stars. We study the structural properties of the old and young stellar populations by preferentially selecting either population based on their color and magnitude. The young population is significantly more concentrated than the old population, with half-light radii of 104+-8 and 148+-16 pc respectively, and their centers are slightly offset. Approximately 10% of the total stellar mass is estimated to be represented by the young stellar population. Comparison of the color-magnitude diagram (CMD) with theoretical isochrones as well as numerical CMD-fitting suggest that star formation began over 10 Gyr ago and continued in recent times until at least a few hundred Myr ago. The CMD-fitting results are indicative of two distinct star formation bursts, with a quiescent period around 3 Gyr ago, albeit at low significance. The results are consistent with no metallicity evolution and [Fe/H] ~ -1.5 over the entire age of the system. Finally, the data show little if any sign of tidal distortion of Leo T.Comment: 8 pages, 9 figures, some small textual changes, accepted for publication in the Astrophysical Journa
    • …
    corecore