1,052 research outputs found

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.211.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm2^{-2} to 1.3×1010 1.3\times 10^{10} cm2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    Feed-Grain Price Relationships in South Dakota

    Get PDF

    Flows on Graphs with Random Capacities

    Full text link
    We investigate flows on graphs whose links have random capacities. For binary trees we derive the probability distribution for the maximal flow from the root to a leaf, and show that for infinite trees it vanishes beyond a certain threshold that depends on the distribution of capacities. We then examine the maximal total flux from the root to the leaves. Our methods generalize to simple graphs with loops, e.g., to hierarchical lattices and to complete graphs.Comment: 8 pages, 6 figure

    Counterion-Mediated Weak and Strong Coupling Electrostatic Interaction between Like-Charged Cylindrical Dielectrics

    Full text link
    We examine the effective counterion-mediated electrostatic interaction between two like-charged dielectric cylinders immersed in a continuous dielectric medium containing neutralizing mobile counterions. We focus on the effects of image charges induced as a result of the dielectric mismatch between the cylindrical cores and the surrounding dielectric medium and investigate the counterion-mediated electrostatic interaction between the cylinders in both limits of weak and strong electrostatic couplings (corresponding, e.g., to systems with monovalent and multivalent counterions, respectively). The results are compared with extensive Monte-Carlo simulations exhibiting good agreement with the limiting weak and strong coupling results in their respective regime of validity.Comment: 19 pages, 10 figure

    Nanomechanical displacement detection using coherent transport in ordered and disordered graphene nanoribbon resonators

    Get PDF
    Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon resonator, coherent electron transport and mechanical deformations couple. As the electrons in graphene have a Fermi wavelength \lambda ~ a_0 = 1.4 {\AA}, this coupling can be used for sensitive displacement detection in both armchair and zigzag graphene nanoribbon NEMS. Here it is shown that for ordered as well as disordered ribbon systems of length L, a strain \epsilon ~ (w/L)^2 due to a deflection w leads to a relative change in conductance \delta G/G ~ (w^2/a_0L).Comment: 4 Pages, 4 figure

    Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks

    Full text link
    The complete knowledge of Laplacian eigenvalues and eigenvectors of complex networks plays an outstanding role in understanding various dynamical processes running on them; however, determining analytically Laplacian eigenvalues and eigenvectors is a theoretical challenge. In this paper, we study the Laplacian spectra and their corresponding eigenvectors of a class of deterministically growing treelike networks. The two interesting quantities are determined through the recurrence relations derived from the structure of the networks. Beginning from the rigorous relations one can obtain the complete eigenvalues and eigenvectors for the networks of arbitrary size. The analytical method opens the way to analytically compute the eigenvalues and eigenvectors of some other deterministic networks, making it possible to accurately calculate their spectral characteristics.Comment: Definitive version accepted for publication in Physical Reivew

    Modelling background charge rearrangements near single-electron transistors as a Poisson process

    Full text link
    Background charge rearrangements in metallic single-electron transistors are modelled in two-level tunnelling systems as a Poisson process with a scale parameter as only variable. The model explains the recent observation of asymmetric Coulomb blockade peak spacing distributions in metallic single-electron transistors. From the scale parameter we estimate the average size of the tunnelling systems, their density of states, and the height of their energy barrier. We conclude that the observed background charge rearrangements predominantly take place in the substrate of the single-electron transistor.Comment: 7 pages, 2 eps figures, used epl.cls macro include

    Ion exchange phase transitions in "doped" water--filled channels

    Full text link
    Ion transport through narrow water--filled channels is impeded by a high electrostatic barrier. The latter originates from the large ratio of the dielectric constants of the water and a surrounding media. We show that ``doping'', i.e. immobile charges attached to the walls of the channel, substantially reduces the barrier. This explains why most of the biological ion channels are ``doped''. We show that at rather generic conditions the channels may undergo ion exchange phase transitions (typically of the first order). Upon such a transition a finite latent concentration of ions may either enter or leave the channel, or be exchanged between the ions of different valences. We discuss possible implications of these transitions for the Ca-vs.-Na selectivity of biological Ca channels. We also show that transport of divalent Ca ions is assisted by their fractionalization into two separate excitations.Comment: 16 pages, 27 figure

    Enhancing activity of Pleurotus sajor-caju (Fr.) Sing β-1,3-Glucanoligosaccharide (Ps-GOS) on proliferation, differentiation, and mineralization of MC3T3-E1 cells through the involvement of BMP-2/Runx2/MAPK/Wnt/β-catenin signaling pathway

    Get PDF
    Osteoporosis is a leading world health problem that results from an imbalance between bone formation and bone resorption. β-glucans has been extensively reported to exhibit a wide range of biological activities, including antiosteoporosis both in vitro and in vivo. However, the molecular mechanisms responsible for β-glucan-mediated bone formation in osteoblasts have not yet been investigated. The oyster mushroom Pleurotus sajor-caju produces abundant amounts of an insoluble β-glucan, which is rendered soluble by enzymatic degradation using Hevea glucanase to generate low-molecular-weight glucanoligosaccharide (Ps-GOS). This study aimed to investigate the osteogenic enhancing activity and underlining molecular mechanism of Ps-GOS on osteoblastogenesis of pre-osteoblastic MC3T3-E1 cells. In this study, it was demonstrated for the first time that low concentrations of Ps-GOS could promote cell proliferation and division after 48 h of treatment. In addition, Ps-GOS upregulated the mRNA and protein expression level of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor-2 (Runx2), which are both involved in BMP signaling pathway, accompanied by increased alkaline phosphatase (ALP) activity and mineralization. Ps-GOS also upregulated the expression of osteogenesis related genes including ALP, collagen type 1 (COL1), and osteocalcin (OCN). Moreover, our novel findings suggest that Ps-GOS may exert its effects through the mitogen-activated protein kinase (MAPK) and wingless-type MMTV integration site (Wnt)/β-catenin signaling pathways

    Addition-Deletion Networks

    Full text link
    We study structural properties of growing networks where both addition and deletion of nodes are possible. Our model network evolves via two independent processes. With rate r, a node is added to the system and this node links to a randomly selected existing node. With rate 1, a randomly selected node is deleted, and its parent node inherits the links of its immediate descendants. We show that the in-component size distribution decays algebraically, c_k ~ k^{-beta}, as k-->infty. The exponent beta=2+1/(r-1) varies continuously with the addition rate r. Structural properties of the network including the height distribution, the diameter of the network, the average distance between two nodes, and the fraction of dangling nodes are also obtained analytically. Interestingly, the deletion process leads to a giant hub, a single node with a macroscopic degree whereas all other nodes have a microscopic degree.Comment: 8 pages, 5 figure
    corecore