7,149 research outputs found

    Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function inflammed tissues

    No full text
    Activated T cells must mediate effector responses sufficient to clear pathogens while avoiding excessive tissue damage. Here we have combined dynamic intravital microscopy with ex vivo assessments of T cell cytokine responses to generate a detailed spatiotemporal picture of CD4+ T cell effector regulation in the skin. In response to antigen, effector T cells arrested transiently on antigen presenting cells, briefly producing cytokine and then resuming migration. Antigen recognition led to PD-1 upregulation of the programmed death-1 (PD-1) glycoprotein by T cells and blocking its canonical ligand, programmed death-ligand 1 (PD-L1), lengthened the duration of migration arrest and cytokine production, showing that PD-1 interaction with PD-L1 is a major negative feedback regulator of antigen responsiveness. We speculate that the immune system employs a mechanism involving T cell recruitment, transient activation, and rapid desensitization, allowing the T cell response to rapidly adjust to changes in antigen presentation and minimize collateral injury to the host

    Fluidic Proportional Thruster System Final Report

    Get PDF
    Fluidic proportional thrust control system with vortex valve

    Field-Induced Transition in the S=1 Antiferromagnetic Chain with Single-Ion Anisotropy in a Transverse Magnetic Field

    Full text link
    The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.Comment: Revtex, 7 figure

    Production of 21 Ne in depth-profiled olivine from a 54 Ma basalt sequence, Eastern Highlands (37° S), Australia

    Get PDF
    In this study we investigate the cosmogenic neon component in olivine samples from a vertical profile in order to quantify muogenic 21Ne production in this mineral. Samples were collected from an 11 m thick Eocene basalt profile in the Eastern Highlands of southeastern Australia. An eruption age of 54.15 ± 0.36 Ma (2σ) was determined from 40Ar/39Ar step-heating experiments (n = 6) on three whole-rock samples. A 36Cl profile on the section indicated an apparent steady state erosion rate of 4.7 ± 0.5 m Ma−1. The eruption age was used to calculate in situ produced radiogenic 4He and nucleogenic 3He and 21Ne concentrations in olivine. Olivine mineral separates (n = 4), extracted from the upper two metres of the studied profile, reveal cosmogenic 21Ne concentrations that attenuate exponentially with depth. However, olivine (Fo68) extracted from below 2 m does not contain discernible 21Ne aside from magmatic and nucleogenic components, with the exception of one sample that apparently contained equal proportions of nucleogenic and muogenic neon. Modelling results suggest a muogenic neon sea-level high-latitude production rate of 0.02 ± 0.04 to 0.9 ± 1.3 atoms g−1 a−1 (1σ), or <2.5% of spallogenic cosmogenic 21Ne production at Earth’s surface. These data support a key implicit assumption in the literature that accumulation of muogenic 21Ne in olivine in surface samples is likely to be negligible/minimal compared to spallogenic 21Ne

    Numerical Latent Heat Observation of the q=5 Potts Model

    Full text link
    Site energy of the five-state ferromagnetic Potts model is numerically calculated at the first-order transition temperature using corner transfer matrix renormalization group (CTMRG) method. The calculated energy of the disordered phase U+U^{+} is clearly different from that of the ordered phase UU^{-}. The obtained latent heat L=UU+L = U^{-} - U^{+} is 0.027, which quantitatively agrees with the exact solution.Comment: 2 pages, Latex(JPSJ style files are included), 2 ps figures, submitted to J. Phys. Soc. Jpn.(short note

    Resolved 24.5 micron emission from massive young stellar objects

    Full text link
    Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes. Our aim is to establish their density structure on scales of ~1000 AU, i.e. a factor 10 increase in angular resolution compared to similar studies performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5 micron images of 14 well-known massive star formation regions with Subaru/COMICS. The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales. For many sources, radiative transfer models are capable of satisfactorily reproducing the observations. They are described by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p = 1.0 and there is evidence that these MYSOs are viewed near edge-on or near face-on, respectively. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We thus find a flattening of the MYSO envelope density law going from ~10 000 AU down to scales of ~1000 AU. We propose that this may be evidence of rotational support of the envelope (abridged).Comment: 21 pages, accepted for A&

    Flux of Atmospheric Neutrinos

    Get PDF
    Atmospheric neutrinos produced by cosmic-ray interactions in the atmosphere are of interest for several reasons. As a beam for studies of neutrino oscillations they cover a range of parameter space hitherto unexplored by accelerator neutrino beams. The atmospheric neutrinos also constitute an important background and calibration beam for neutrino astronomy and for the search for proton decay and other rare processes. Here we review the literature on calculations of atmospheric neutrinos over the full range of energy, but with particular attention to the aspects important for neutrino oscillations. Our goal is to assess how well the properties of atmospheric neutrinos are known at present.Comment: 68 pages, 26 figures. With permission from the Annual Review of Nuclear & Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear & Particle Science Vol. 52, to be published in December 2002 by Annual Reviews (http://annualreviews.org

    Monitoring Networks through Multiparty Session Types

    Get PDF
    In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognized, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static-dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity

    Critical phase of a magnetic hard hexagon model on triangular lattice

    Full text link
    We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexagons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for discreate values of activity. It turns out that the restrictions bring about a critical phase which the usual hard hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase of the newly proposed model are estimated as 4 and 6, respectively.Comment: 11 pages, 8 Postscript figures, uses revtex.st
    corecore