50 research outputs found

    MicroRNA Involvement in Immune Activation During Heart Failure

    Get PDF
    Heart failure is one of the common end stages of cardiovascular diseases, the leading cause of death in developed countries. Molecular mechanisms underlying the development of heart failure remain elusive but there is a consistent observation of chronic immune activation and aberrant microRNA (miRNA) expression that is present in failing hearts. This review will focus on the interplay between the immune system and miRNAs as factors that play a role during the development of heart failure. Several studies have shown that heart failure patients can be characterized by a sustained innate immune activation. The role of inflammatory signaling is discussed and TLR4 signaling, IL-1β, TNFα and IL-6 expression appears to coincide with the development of heart failure. Furthermore, we describe the implication of the renin angiotensin aldosteron system in immunity and heart failure. In the past decade microRNAs (miRNAs), small non-coding RNAs that translationally repress protein synthesis by binding to partially complementary sequences of mRNA, have come to light as important regulators of several kinds of cardiovascular diseases including cardiac hypertrophy and heart failure. The involvement of differentially expressed miRNAs in the inflammation that occurs during the development of heart failure is still subject of investigation. Here, we summarize and comment on the first studies in this field and hypothesize on the putative involvement of certain miRNAs in heart failure. MicroRNAs have been shown to be critical regulators of cardiac function and inflammation. Future research will have to point out if dampening the immune response, and the miRNAs associated with it, during the development of heart failure is a therapeutically plausible route to follow

    The macrophage at the intersection of immunity and metabolism in obesity

    Get PDF
    Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe. Identifying the mechanisms involved in its development and propagation will help the development of preventative and therapeutic strategies that may help control its rising rates

    Single Crystalline Oxygen-free Titanium Nitride by XPS

    No full text

    Characterization of CrBN films deposited by ion beam assisted deposition

    Get PDF
    This article reports on the growth and analysis of CrBN nanocrystalline materials using an ion beam assisted deposition process. In addition, this article addresses the utilization of spectroscopic ellipsometry for in situ analysis of ternary nitrides. Coatings, with a total thickness of 1.5 ±0.2 μm, were deposited at low temperatures (\u3c200 °C) on silicon substrates using ion beam assisted deposition. These coatings were characterized postdeposition using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), visible-light spectroscopic ellipsometry (VIS-SE), infrared spectroscopic ellipsometry (IR-SE), and nanoindentation. The primary phases in the films were investigated using XRD. The surface morphology and nanocrystalline nature of the coatings (grain size of 5–7 nm) were deduced using AFM. The elemental composition and phase composition of the samples were determined from XPS and AES measurements and were subsequently deduced from the analysis of the VIS-SE data, and these correlated well. XPS, AES, and IR-SE revealed the crystal structure of the BN phase in the ternary compounds. The correlation of the results from these various techniques indicates that in situ SE may be a potential technique to control the growth of ternary nitride coatings in the future. The mechanical properties of the coatings were evaluated using nanohardness testing. The hardness and elastic modulus were measured to be 19–22 GPa and 250–270 GPa, respectively
    corecore