466 research outputs found
Energy and Charged Particle Flow in 10.8 A GeV/c Au+Au Collisions
Experimental results and a detailed analysis are presented of the transverse
energy and charged particle azimuthal distributions measured by the E877
collaboration for different centralities of Au+Au collisions at a beam momentum
of 10.8 A GeV/c. The anisotropy of these distributions is studied with respect
to the reaction plane reconstructed on an event-by-event basis using the
transverse energy distribution measured by calorimeters. Results are corrected
for the reaction plane resolution. For semicentral events we observe directed
flow signals of up to ten percent. We observe a stronger anisotropy for slow
charged particles. For both the charged particle and transverse energy
distributions we observe a small but non zero elliptic anisotropy with the
major axis pointing into the reaction plane. Combining the information on
transverse energy and charged particle flow we obtain information on the flow
of nucleons and pions. The data are compared to event generators and the need
to introduce a mean field or nucleon-nucleon potential is discussed.Comment: RevTex, 25 pages, 13 figures included as one Postscript file,
submitted to Phys. Rev.
Evaluating the efficiency of membrane's refurbishment solutions to perform vertical extensions in old buildings using a multicriteria decision-support model
The initial premise of this research is that the relative efficiency of refurbishment solutions with architectural membranes needs to be measured in order to allow its comparison with conventional solutions, helping decision makers to select the most efficient solutions. The evaluation of this efficiency depends on economic features, but also on functional, technological and environmental ones. This study presents a model to solve this problem, using decision trees, multicriteria decision-making methods (SAW and AHP) and a sensitivity analysis. The selection of the criteria and the assignment of the corresponding weights was attained through an expert group survey for a baseline scenario, aiming maximizing functional performance (such as energy savings) and minimizing employed resources (materials, costs, etc.). The most efficient refurbishment solution among the set of alternatives was reached using the developed model. The methodology was applied to a case study - an old building from the nineteenth century, located in Portugal, which was refurbished with a vertical extension. The result reveals that the proposed model is successful and illustrates the potential of this evaluation methodology to compare and quantify the efficiency of a series of different lightweight constructive solutions. It also underlines the advantages of using lightweight building technologies, especially with architectural membrane materials, in building refurbishments.This research was made possible by the support of the: Portuguese Foundation for Science and Technology (FCT), Portuguese Ministry of Education and Science (MCE) and European Social Fund (ESF) with the reference grant SFRH/BD/104891/2014; the Project UID/AUR/04509/2013 by FCTMEC by national funding and FEDER co-financing under the new PT2020 partnership agreement - Lab2PT, School of Architecture/University of Minho, Portugal; and Project POCI-01-0145-FEDER-007457 - CONSTRUCT - Institute of R&D In Structures and Construction of Faculty of Engineering/University of Porto, Portugal, funded by FEDER funds through COMPETE2020
Evaluation of elicitation methods to quantify Bayes linear models
The Bayes linear methodology allows decision makers to express their subjective beliefs and adjust these beliefs as observations are made. It is similar in spirit to probabilistic Bayesian approaches, but differs as it uses expectation as its primitive. While substantial work has been carried out in Bayes linear analysis, both in terms of theory development and application, there is little published material on the elicitation of structured expert judgement to quantify models. This paper investigates different methods that could be used by analysts when creating an elicitation process. The theoretical underpinnings of the elicitation methods developed are explored and an evaluation of their use is presented. This work was motivated by, and is a precursor to, an industrial application of Bayes linear modelling of the reliability of defence systems. An illustrative example demonstrates how the methods can be used in practice
Proton and Pion Production in Au+Au Collisions at 10.8A GeV/c
We present proton and pion tranverse momentum spectra and rapidity
distributions for Au+Au collisions at 10.8A GeV/c. The proton spectra exhibit
collective transverse flow effects. Evidence of the influence of the Coulomb
interaction from the fireball is found in the pion transverse momentum spectra.
The data are compared with the predictions of the RQMD event generator.Comment: plain tex (revtex), 24 pages Submitted to Phys. Rev.
Identification of the protein kinases Pyk3 and Phg2 as regulators of the STATc-mediated response to hyperosmolarity
Cellular adaptation to changes in environmental osmolarity is crucial for cell survival. In Dictyostelium, STATc is a key regulator of the transcriptional response to hyperosmotic stress. Its phosphorylation and consequent activation is controlled by two signaling branches, one cGMP- and the other Ca(2+)-dependent, of which many signaling components have yet to be identified. The STATc stress signalling pathway feeds back on itself by upregulating the expression of STATc and STATc-regulated genes. Based on microarray studies we chose two tyrosine-kinase like proteins, Pyk3 and Phg2, as possible modulators of STATc phosphorylation and generated single and double knock-out mutants to them. Transcriptional regulation of STATc and STATc dependent genes was disturbed in pyk3(-), phg2(-), and pyk3(-)/phg2(-) cells. The absence of Pyk3 and/or Phg2 resulted in diminished or completely abolished increased transcription of STATc dependent genes in response to sorbitol, 8-Br-cGMP and the Ca(2+) liberator BHQ. Also, phospho-STATc levels were significantly reduced in pyk3(-) and phg2(-) cells and even further decreased in pyk3(-)/phg2(-) cells. The reduced phosphorylation was mirrored by a significant delay in nuclear translocation of GFP-STATc. The protein tyrosine phosphatase 3 (PTP3), which dephosphorylates and inhibits STATc, is inhibited by stress-induced phosphorylation on S448 and S747. Use of phosphoserine specific antibodies showed that Phg2 but not Pyk3 is involved in the phosphorylation of PTP3 on S747. In pull-down assays Phg2 and PTP3 interact directly, suggesting that Phg2 phosphorylates PTP3 on S747 in vivo. Phosphorylation of S448 was unchanged in phg2(-) cells. We show that Phg2 and an, as yet unknown, S448 protein kinase are responsible for PTP3 phosphorylation and hence its inhibition, and that Pyk3 is involved in the regulation of STATc by either directly or indirectly activating it. Our results add further complexities to the regulation of STATc, which presumably ensure its optimal activation in response to different environmental cues
Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions
Two-proton correlation functions have been measured in Si+Pb collisions at
14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration.
Data are compared with predictions of the transport model RQMD and the source
size is inferred from this comparison. Our analysis shows that, for both
reactions, the characteristic size of the system at freeze-out exceeds the size
of the projectile, suggesting that the fireball created in the collision has
expanded. For Au+Au reactions, the observed centrality dependence of the
two-proton correlation function implies that more central collisions lead to a
larger source sizes.Comment: RevTex, 12 pages, 5 figure
Directed flow of antiprotons in Au+Au collisions at AGS
Directed flow of antiprotons is studied in Au+Au collisions at a beam
momentum of 11.5A GeV/c. It is shown that antiproton directed flow is
anti-correlated to proton flow. The measured transverse momentum dependence of
the antiproton flow is compared with predictions of the RQMD event generator.Comment: 16 pages, 6 figure
Proton and Pion Production Relative to the Reaction Plane in Au + Au Collisions at AGS Energies
Results are presented of an analysis of proton and charged pion azimuthal
distributions measured with respect to the reaction plane in Au + Au collisions
at a beam momentum of about 11 AGeV/c. The azimuthal anisotropy is studied as a
function of particle rapidity and transverse momentum for different
centralities of the collisions. The triple differential (in rapidity,
transverse momentum, and azimuthal angle) distributions are reconstructed. A
comparison of the results with a previous analysis of charged particle and
transverse energy flow as well as with model predictions is presented.Comment: 23 pages (LaTeX), 12 figure
Charged Particle Pseudorapidity Distributions in Au+Al, Cu, Au, and U Collisions at 10.8 AGeV/c
We present the results of an analysis of charged particle pseudorapidity
distributions in the central region in collisions of a Au projectile with Al,
Cu, Au, and U targets at an incident energy of 10.8~GeV/c per nucleon. The
pseudorapidity distributions are presented as a function of transverse energy
produced in the target or central pseudorapidity regions. The correlation
between charged multiplicity and transverse energy measured in the central
region, as well as the target and projectile regions is also presented. We give
results for transverse energy per charged particle as a function of
pseudorapidity and centrality.Comment: 31 pages + 12 figures (compressed and uuencoded by uufiles), LATEX,
Submitted to PR
Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena
- …