486 research outputs found

    Planck 2015 results:X. Diffuse component separation: Foreground maps

    Get PDF
    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.́5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future

    A continuous dry 300 mK cooler for THz sensing applications

    Get PDF
    We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped 3He cooling systems. This closed dry system uses only 5 l of 3He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement of a far infrared camera

    Use of High Sensitivity Bolometers for Astronomy: Planck High Frequency Instrument

    Get PDF
    The Planck satellite is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. It is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. The detectors of its High Frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. This impacts the bolometer design as well as other elements: The cooling system must present outstanding temperature stability, and the amplification chain must show a flat noise spectrum down to very low frequencies

    A strained silicon cold electron bolometer using Schottky contacts

    Get PDF
    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10−16 W Hz−1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz−1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz−1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise

    First characterization of a superconducting filter-bank spectrometer for hyper-spectral microwave atmospheric sounding with transition edge sensor readout

    Get PDF
    We describe the design, fabrication, integration and characterization of a prototype superconducting filter bank with transition edge sensor readout designed to explore millimetre-wave detection at frequencies in the range 40 to 65 GHz. Results indicate highly uniform filter channel placement in frequency and high overall detection efficiency. The route to a full atmospheric sounding instrument in this frequency range is discussed.Centre for Earth Observing Instrumentation UK (CEOI

    The High Frequency Instrument of Planck: Requirements and Design

    Get PDF
    The Planck satellite is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. It is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. The detectors of its High frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. Due to the scanning on the sky, time features of the measurement chain are directly transformed into angular features in the sky maps. This impacts the bolometer design as well as other elements: For example, the cooling system must present outstanding temperature stability, and the amplification chain must show, down to very low frequencies, a flat noise spectrum

    Optical Characterisation of a Camera module Developed for Ultra-low NEP TES Detector Arrays at FIR Wavelengths

    Get PDF
    Here we report on the optical design and on the spectral-spatial characterisation of a small 16 pixel camera. The prototype uses TES detectors with NEPs ~10-16 W/Hz0.5 which have been fabricated with near identical optical coupling structures to mimic their much lower NEP counterparts (~10-19 W/Hz0.5). This modification, which is achieved through changing only the pixel thermal conductance, G, has allowed us to perform spectral/spatial cryogenic testing using a 100mK ADR to view room temperature thermal sources. The measurements show a flat spectral response across the waveband and minimal side lobe structure in the antenna patterns down to 30dB

    Predicting the response of a submillimeter bolometer to cosmic rays

    Get PDF
    Bolometers designed to detect. submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model

    Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    Get PDF
    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting ß-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/Hz\sqrt{Hz} and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 µm and S-band 34 - 60 µm .European Space AgencyThis is the final version of the article. It first appeared from SPIE via http://dx.doi.org/10.1117/12.223274
    corecore