1,453 research outputs found

    Cannabinoid Receptor Involvement in Stress-Induced Cocaine Reinstatement: Potential Interaction with Noradrenergic Pathways

    Get PDF
    This study examined the role of endocannabinoid signaling in stress-induced reinstatement of cocaine seeking and explored the interaction between noradrenergic and endocannabinergic systems in the process. A well-validated preclinical model for human relapse, the rodent conditioned place preference assay, was used. Cocaine-induced place preference was established in C57BL/6 mice using injections of 15 mg/kg cocaine. Following extinction of preference for the cocaine-paired environment, reinstatement of place preference was determined following 6 min of swim stress or cocaine injection (15 mg/kg, i.p.). The role of endocannabinoid signaling was studied using the cannabinoid antagonist AM-251 (3 mg/kg, i.p.). Another cohort of mice was tested for reinstatement following administration of the cannabinoid agonist CP 55,940 (10, 20, or 40 ÎŒg/kg, i.p.). The alpha-2 adrenergic antagonist BRL-44408 (5 mg/kg, i.p.) with or without CP 55,940 (20 ÎŒg/kg) was administered to a third group of mice. We found that: (1) AM-251 blocked forced swim-induced, but not cocaine-induced, reinstatement of cocaine-seeking behavior; (2) the cannabinoid agonist CP 55,940 did not reinstate cocaine-seeking behavior when administered alone but did synergize with a non-reinstating dose of the alpha-2 adrenergic antagonist BRL-44408 to cause reinstatement. These results are consistent with the hypothesis that stress exposure triggers the endogenous activation of CB1 receptors and that activation of the endocannabinoid system is required for the stress-induced relapse of the mice to cocaine seeking. Further, the data suggest that the endocannabinoid system interacts with noradrenergic mechanisms to influence stress-induced reinstatement of cocaine-seeking behavior

    When is open-endedness desirable in restoration projects?

    Get PDF
    A low-intervention approach to restoration that also allows restoration outcomes to be framed as trajectories of ecosystem change can be described as ‘open-ended’ restoration. It is an approach that recognizes that long-term ecosystem behavior involves continual change at small and large spatial and temporal scales. There are a number of situations in which it is appropriate to adopt an open-ended approach to restoration including: in remote and large areas; where ecological limiting factors will be changed by future climates; where antecedent conditions cannot be replicated; where there are novel starting points for restoration; where restoration relies strongly on processes outside the restoration area; in inherently dynamic systems; where costs are high and where the public demands ‘wildness’. Where this approach is adopted managers need to explain the project and deal with public expectations and public risk. Monitoring biotic and abiotic components of the project are very important as an open-ended approach does not equate to ‘abandon and ignore it’

    Simulation of Fluid Flow During Direct Synthesis of H2_{2}O2_{2} in a Microstructured Membrane Reactor

    Get PDF
    A microstructured membrane reactor has been developed to overcome the safety and productivity challenge of the direct synthesis of hydrogen peroxide. A single membrane is employed for separate, continuous dosage of the gaseous reactants hydrogen and oxygen to the solid catalyst present in the aqueous solvent. Using a custom OpenFOAM¼ model, the impact of catalyst‐coated static mixers with different mixer geometries is studied. It is demonstrated that the custom fluid guiding elements outperform the investigated commercial static mixer under the flow conditions relevant to this application

    A New Point of View on Skin-Friction Contributions in Adverse-Pressure-gradient Turbulent Boundary Layers

    Get PDF
    Skin-friction decompositions such as the so-called FIK identity (Fukagata et al., 2002) are useful tools in identifying relevant contributions to the friction, but may also lead to results difficult to interpret when the total friction is recovered from cancellation of multiple terms with large values. We propose a new formulation of the FIK contributions related to streamwise inhomogeneity, which is derived from the convective form of the momentum equation and using the concept of dynamic pressure. We examine turbulent boundary layers subjected to various pressure-gradient conditions, including cases with drag-reducing control. The new formulation distinguishes more precisely the roles of the free-stream pressure distribution, wall-normal convection, and turbulent fluctuations. Our results allow to identify different regimes in adverse-pressure-gradient turbulent boundary layers, corresponding to different proportions of the various contributions, and suggest a possible direction towards studying the onset of mean separation
    • 

    corecore