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Abstract: This study examined the role of endocannabinoid signaling in 

stress-induced reinstatement of cocaine seeking and explored the interaction 

between noradrenergic and endocannabinergic systems in the process. A 

well-validated preclinical model for human relapse, the rodent conditioned 

place preference assay was used. Cocaine-induced place preference was 

established in C57BL/6 mice using injections of 15 mg/kg cocaine. Following 

extinction of preference for the cocaine-paired environment, reinstatement of 

place preference was determined following 6 min of swim stress, or cocaine 

injection (15 mg/kg, i.p.). The role of endocannabinoid signaling was studied 

using the cannabinoid antagonist AM-251 (3 mg/kg, i.p.). Another cohort of 

mice was tested for reinstatement following administration of the cannabinoid 

agonist CP 55,940 (10, 20 or 40 μg/kg, i.p.). The alpha-2 adrenergic 

antagonist BRL-44408 (5 mg/kg, i.p.) with or without CP 55,940 (20 μg/kg) 

was administered to a third group of mice. We found that: 1) AM-251 blocked 

forced swim-induced but not cocaine-induced reinstatement of cocaine-

seeking behavior; 2) the cannabinoid agonist CP 55,940 did not reinstate 

cocaine-seeking behavior when administered alone but did synergize with a 

non-reinstating dose of the alpha-2 adrenergic antagonist BRL-44408 to 

cause reinstatement. These results are consistent with the hypothesis that 

stress exposure triggers the endogenous activation of CB1 receptors and that 

activation of the endocannabinoid system is required for the stress-induced 

relapse of the mice to cocaine seeking. Further, the data suggests that the 

endocannabinoid system interacts with noradrenergic mechanisms to 

influence stress-induced reinstatement of cocaine-seeking behavior. 

Keywords: cannabinoids, cocaine, norepinephrine, relapse, stress, 

conditioned place preference 

Cocaine abuse and dependence are important problems with 

significant psychosocial, medical and financial implications. One of the 

more troubling aspects of addiction is the persistent vulnerability to 

relapse to drug use that continues even after long periods of 

abstinence. Although relapse can be induced by re-exposure to 

cocaine, drug-associated cues or stress (Childress et al., 1992; See et 

al., 1999; Shaham et al., 2000; Stewart, 2000; Kalivas and McFarland, 
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2003), exposure to stress is particularly injurious given its 

inescapability. The investigation of neurobiological mechanisms at the 

intersection of motivated behavior and stress could prove fruitful in the 

search for potential treatments for stress-induced drug relapse. The 

endocannabinoid system (ECS), including the cannabinoid receptors 

(CB1 and CB2), endocannabinoids (N-arachidonylethanolamine and 2-

arachidonoylglycerol) and enzymes and transporters which control 

synaptic concentrations of endocannabinoids, are attractive targets in 

this regard. 

The preclinical investigation of relapse involves the use of 

reinstatement protocols in which various stimuli are tested for their 

ability to re-establish extinguished drug-seeking behavior (Shaham 

2003). Conditioned place preference is commonly used to study 

reinstatement in mice. Using this method, cocaine-induced conditioned 

place preference becomes extinguished with repeated drug-free 

exposure to the cocaine-paired environment. The ability of various 

stimuli to re-establish the cocaine preference is then tested 

(Tzschentke, 2007). Using this protocol, priming injections of cocaine 

and a variety of stressors have been shown to produce reinstatement 

(Itzhak and Martin, 2002; Kreibich and Blendy, 2004; Ribeiro Do Couto 

et al., 2006; Tzchentke, 2007; Orsini, et al., 2008; Redila and 

Chavkin, 2008; Mantsch et al., 2010). 

There is strong evidence that the ECS is activated in multiple 

brain regions involved in addiction by stress exposure (Di et al, 2005; 

Gorzalka et al., 2008; Patel and Hillard, 2008; Rademacher et al, 

2008; Hill et al., 2009). It is hypothesized that the result of this 

activation in most brain regions is to oppose the effects of stress (Cota 

2008; Gorzalka et al., 2008; Hill et al., 2010). For example, CB1 

receptor knock out animals have increased basal and stress-induced 

HPA activity, (Barna et al., 2004; Cota et al., 2007), CB1 antagonists 

increase basal and stress induced glucocorticoid secretion (Manzanares 

et al., 1999; Patel et al., 2004; Wade et al., 2006), and CB1 agonists 

and clearance inhibitors reduce stress-induced glucocorticoid secretion 

(Patel et al., 2004). 

Central noradrenergic systems also play an important role in the 

physiological response to stress (Abercrombie et al., 1988; Tanaka et 

al., 1991; Finlay et al., 1995) and interactions between the 
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noradrenergic system and cocaine are well documented (Sofuoglu and 

Sewell, 2009). Repeated cocaine exposure produces long-lasting 

adaptations within central noradrenergic systems that can lead to 

enhanced noradrenergic responsiveness during stress (Belej, et al 

1996; Macey, et al 2003; Baumann, et al 2004; Beveridge, et al 2005; 

Lanteri, et al 2008) and norepinephrine (NE) release is required for 

stress-induced drug reinstatement using both rat self-administration 

models (Erb et al., 2000; Leri et al., 2002) and mouse conditioned 

place preference protocols (Mantsch et al., 2010). 

The ECS has a well-established role in enhancing the 

motivational effects and promoting drug seeking and relapse behavior 

of alcohol, nicotine, opioids and marijuana (Tanda and Goldberg, 

2003; Lupica et al., 2004; Gardner, 2005; Cohen et al., 2005). Studies 

of the role of the ECS in the rewarding aspects of cocaine have shown 

inconsistent effects (Fattore et al., 1999; Soria et al., 2005; Xi et al., 

2008; Wiskerke et al., 2008; Orio et al., 2009) but the ECS seems to 

play an important role in relapse behavior. DeVries et al., (2001) 

found that a cannabinoid agonist reinstated cocaine seeking in rats 

that had been conditioned and extinguished in a self-administration 

paradigm and that a cannabinoid antagonist prevented cocaine- and 

cue- but not stress- induced reinstatement of cocaine seeking. 

Cannabinoid mechanisms were also implicated in cocaine-primed 

reinstatement in rats (Xi et al., 2006; Filip et al., 2006). In mice, 

however, cue-induced but not cocaine-induced reinstatement was 

blocked by a cannabinoid antagonist (Ward et al., 2009). Surprisingly, 

given the well-established link between the ECS and stress, there has 

been only one investigation of the role of stress-induced cocaine 

reinstatement (De Vries et al., 2001) and there have been no studies 

on the interaction between the endocannabinoid and noradrenergic 

systems in stress-induced cocaine relapse. 

The purpose of this study was to examine the role of the ECS in 

cocaine- and stress-induced relapse of cocaine seeking behavior and 

its interaction with noradrenergic mechanisms in mice using a 

conditioned place preference reinstatement approach. 
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Experimental Procedures 

Animals 

Male C57BL/6 mice, 8-9 weeks old, were purchased from Harlan 

(Indianapolis, IN). The mice were housed singly in a temperature- and 

humidity-controlled, AAALAC- accredited animal facility under a 12 

h/12 h light/dark cycle (lights on at 7:00 AM) and had access to food 

and water at all times, except when in the experimental chambers. 

The animals were acclimatized for one week in the animal care facility 

before use in the studies. All experiments had been reviewed and 

approved by the Institutional Animal Care and Use Committee and 

were carried out in accordance with the Guide for the Care and Use of 

Laboratory Animals. 

Drugs 

Cocaine HCl was acquired from the National Institute on Drug 

Abuse (Bethesda, MD) through the NIDA Drug Supply Program. CP 

55,940 and AM-251 were purchased from Sigma-Aldrich (St. Louis, 

MO) and BRL-44408 maleate was acquired from Tocris Bioscience 

(Minneapolis, MN). Cocaine and BRL-44408 were dissolved in saline 

(0.9% NaCl solution) and CP 55,940 and AM-251 were dissolved in a 

1:1:18 ratio of ethanol, Cremophor EL (Sigma-Aldrich), and saline. 

Cocaine and BRL-44408 solutions were administered i.p. in a volume 

of 0.1 ml/25 g body weight. CP 55,940 and AM-251 were administered 

i.p. in a volume of 0.1 ml/10 g body weight. Pretreatment times for CP 

55,940, BRL-44408 and AM-251 were 30 min. 

Equipment 

Behavioral testing was conducted using six ENV-3013 three-

chambered mouse place preference chambers from Med-Associates, 

Inc (St. Albans, VT). Two 46.5 × 12.7 × 12.7 cm side compartments 

were each connected to a 7.2 cm × 12.7 cm gray-colored center 

compartment. One side compartment had white walls and a stainless 

steel mesh floor and the other side compartment had black walls and a 

stainless steel grid rod floor. The clear tops of the compartments were 

hinged to permit placement and removal of the mice. Room ceiling 
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lights were turned on and, to balance unconditioned side preference, 

the black compartments were illuminated with additional suspended 

lights, providing a total illumination of approximately 300 lux. 

Automated data collection was accomplished using photobeams (6 

beams for the white and black test areas and 2 beams for the center 

gray area) which were evenly spaced across the length of the chamber 

and interfaced with a computer containing Med-PC software. 

Cocaine-Induced Conditioned Place Preference 

Cocaine-induced conditioned place preference was established 

using an unbiased design in which one of the side compartments was 

randomly designated as the cocaine compartment and the other as the 

saline compartment. On the first day of the procedure, mice were 

placed into the center compartment of the chamber and provided free 

access to both side compartments for 30 minutes in the absence of 

saline or cocaine pretreatment to determine pre-conditioning 

preference. During the 8-day conditioning phase of the experiment, 

mice received cocaine (15 mg/kg, ip) and saline injections on 

alternating days after which time they were confined to the randomly 

designated treatment-appropriate compartment for 30 minutes. After 

the final conditioning session, mice were tested for the expression 

cocaine-induced conditioned place preference by once again placing 

them into the center compartment of the chamber and providing them 

with free access to the side compartments for 30 minutes. Conditioned 

place preference was defined as the change in time spent in the 

cocaine-paired compartment after conditioning compared to the initial 

pre-conditioning session. The 15 mg/kg cocaine dose was selected 

based on previous results (Mantsch et al., 2010). 

Extinction 

Following conditioning, daily extinction training was conducted. 

During the extinction sessions, mice were placed into the center 

compartment and allowed free access to the side compartments for 30 

min. Mice underwent daily extinction training until the conditioned 

place preference for the cocaine-paired compartment during the 

session was reduced by at least 50%. 
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Reinstatement Testing 

The reinstatement sessions were identical to the extinction 

sessions except that mice received exposure to stressors and/or drug 

injections prior to the session. Reinstatement was defined as the 

increase in time spent in the cocaine-paired compartment on the test 

day (reinstatement day) compared to the time spent on the cocaine-

paired compartment on the previous day (extinction day). Mice were 

tested more than once for reinstatement, receiving all treatments 

within a given experiment. The stressors and/or drugs were given in 

counter-balanced order to avoid potential sequence effects. 

Reinstatement sessions were separated by additional extinction 

sessions. Mice were required to reach the extinction criterion once 

again before the next reinstatement test was conducted. 

Forced Swim Stress-Induced Reinstatement Testing 

Forced swim stress (FS)-induced reinstatement was examined 

by placing the mice into a 30 cm h × 20 cm d cylindrical polypropylene 

container filled with water (20-25° C) for 6 min, 24 min after 

pretreatment with drug or respective vehicles. Following FS, mice were 

placed back into their home cages for 1-2 min prior to introduction into 

the center compartment of the place conditioning chamber for 

reinstatement testing. 

Cocaine-Induced Reinstatement Testing 

Reinstatement induced by a cocaine priming injection was 

tested in mice by injection of 15 mg/kg dose of cocaine i.p. 

immediately before placement into the center compartment of the 

place conditioning chamber for reinstatement testing. 

Effect of the CB1 Receptor Antagonist, AM-251, on 

Stress- and Cocaine-Induced Reinstatement 

In order to determine if CB1 receptor activation plays a role in 

stress- or cocaine-induced reinstatement, 24 min prior to forced swim 

testing or 30 minutes prior to cocaine injection, the mice were injected 

with AM-251 or vehicle. The mice were also injected with AM-251 or 
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vehicle 30 minutes before testing in order to determine whether the 

AM-251 or vehicle injection could cause reinstatement. All mice 

received six treatments (FS+ vehicle, FS+AM-251, cocaine+vehicle, 

cocaine+AM-251, AM-251 + vehicle, and vehicle+vehicle) in 

counterbalanced order. Mice reached extinction criterion before 

retesting. 

Reinstatement by the CB1 Receptor Agonist CP 55,940 

In order to determine if CB1 receptor activation alone was 

sufficient to induced reinstatement, mice were tested for reinstatement 

in response to the synthetic CB1 receptor agoninst CP 55,940. Thirty 

minutes prior to testing, mice were injected with vehicle or 10, 20 or 

40 μg/kg doses of CP 55,940. All mice received all 4 treatments in 

counterbalanced order. Mice reached extinction criterion before 

retesting. 

Reinstatement by CP 55,940 in Combination with BRL-

44408 

Another group of mice were tested for reinstatement by CP 

55,940 in combination with a subthreshold dose of the selective alpha-

2 adrenergic receptor antagonist and pharmacological stressor, BRL-

44408, in order to determine if cannabinoid receptor activation could 

potentiate a pharmacological stressor-induced reinstatement and 

whether cannabinoid receptor activation interacted with noradrenergic 

mechanisms to induce reinstatement. It has been shown previously 

that a sufficient dose of BRL-44408 can induce reinstatement 

(Mantsch, et al., 2010). We have found that 5 mg/kg BRL-44408 is a 

subthreshold dose. Therefore, 20 μg/kg CP 55,940 and 5 mg/kg BRL-

44408 were injected i.p. 30 minutes prior to reinstatement testing. 

Statistical Data Analyses 

Statistical analysis was carried out using SigmaPlot 11 statistical 

software (Systat Software, San Jose, CA). Data are expressed as mean 

+/- standard error of the mean. The ability of a drug and/or stress 

procedure to elicit reinstatement was determined by the difference 

between the time spent in the cocaine-paired compartment on the day 
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of testing (reinstatement day) and the preceding extinction session 

(extinction day). Comparisons between effects of different drugs 

and/or stress on reinstatement were also determined. Statistical 

significance was determined by two-way repeated measures (RM) 

ANOVA with post-hoc multiple comparisons using the Holm-Sidak 

method. 

Results 

Establishment of cocaine-induced conditioned place 

preference 

Previous studies had determined that 15 mg/kg cocaine dose 

was optimal for producing conditioned place preference (Mantsch et 

al., 2010). We found significant cocaine-induced conditioned place 

preference, defined as an increase in time spent in the cocaine-paired 

compartment, was observed in each of the experiments (p≤0.001 for 

each experiment). The average number of extinction sessions prior to 

the first reinstatement test session was 5.9. Nineteen percent of mice 

were not tested for reinstatement since they did not display cocaine-

induced conditioned place preference or failed to reach the extinction 

criterion. 

The effect of AM-251 on stress- and cocaine-induced 

reinstatement 

Reinstatement was tested in mice which had been conditioned 

to cocaine and whose place preference had been extinguished. Both FS 

(6 minutes) and cocaine (15 mg/kg, i.p.) produced reinstatement, as 

indicated by significant increases in time spent on the cocaine-paired 

side compared to the preceding extinction day (p<0.05 Holm-Sidak 

following a significant interaction between time (extinction and 

reinstatement day) and treatment (F(5,25)=8.142, p<0.001, two-way 

RM ANOVA, Figure 1). To determine whether endocannabinoid 

signaling was involved in either type of reinstatement, the CB1 

receptor antagonist AM-251 was injected before FS and cocaine. AM-

251 treatment completely blocked the forced swim-induced 

reinstatement (no significant difference in the time spent in the 

cocaine-paired environment between the extinction and reinstatement 
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day within the AM+FS group and a significant effect of treatment 

within reinstatement days between FS and AM+FS, p<0.05, Holm 

Sidak). AM-251 treatment did not block cocaine-induced reinstatement 

(significant effect of time in both Coc and Coc+AM, p<0.05, Holm-

Sidak, no significant difference between reinstatement days with Coc 

vs Coc+AM-251). Neither AM-251 nor vehicle produced any 

reinstatement when given alone. 

 

Figure 1 The effect of the cannabinoid antagonist AM-251 on forced swim- and 

cocaine-induced reinstatement. Data represent the time spent in the cocaine-paired 

compartment (mean +/- SEM) during the extinction session prior to reinstatement 

testing and after reinstatement testing with forced swim (6 minutes) + vehicle (FS), 

FS + AM-251(3 mg/kg, i.p.) (FS+AM), cocaine (15 mg/kg, i.p) + vehicle (Coc), 

cocaine + AM-251 (Coc+AM), vehicle, or AM-251. Vehicle and AM-251 were injected 

30 minutes prior to reinstatement testing. Coc and FS were administered immediately 

prior to reinstatement testing. A significant increase in the time spent in the cocaine-

paired compartment during reinstatement testing compared to the preceding 

extinction session was seen after both FS and cocaine (* =p<0.05, Holm-Sidak 

multiple comparison test) but not after AM-251 or vehicle alone. A significant 

difference between the time spent in the cocaine-paired compartment on 

reinstatement days was seen between the FS and FS+AM251 treatment groups (@ = 

p<0.05, Holm-Sidak multiple comparison test) but not between the Coc and the Coc + 

AM-251 groups. 
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The effect of CP 55,940 on reinstatement of place 

preference for cocaine 

Mice which had been conditioned to cocaine and whose place 

preference had been extinguished were tested with vehicle and three 

doses of the CP 55,940 to determine if administration of a cannabinoid 

agonist was sufficient to induce reinstatement of place preference 

(Figure 2). No reinstatement was observed following 10, 20 or 40 

μg/kg administration of CP 55,940 (F(1,21)=0.0875, p=0.776, main 

effect of time (extinction vs. reinstatement day), two-way RM ANOVA). 

 

Figure 2 The effect of the cannabinoid agonist CP 55,940 on reinstatement of 

extinguished cocaine-induced conditioned place preference. Data represent the time 

spent in the cocaine-paired compartment (mean +/- SEM) during the extinction 

session prior to reinstatement testing and after reinstatement testing with vehicle 

(Veh) or 10, 20 or 40 μg/kg, i.p. CP-55,940, 30 min prior to testing. There were no 

significant differences (two way RM ANOVA). 
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The involvement of noradrenergic mechanisms in 

cannabinoid mediation of cocaine place preference 

In order to examine the interaction between cannabinergic and 

noradrenergic systems in cocaine reinstatement, another group of 

mice which had been conditioned to cocaine and whose place 

preference had been extinguished were tested with either 1) vehicle, 

2) the alpha-2 adrenergic antagonist BRL-44408 (5 mg/kg, i.p.) or 3) 

BRL-44408 (5 mg/kg, i.p.) and CP 55,940 (20 μg/kg). BRL-44408 

alone did not induce reinstatement but when combined with the non-

reinstating dose of CP 55,940, reinstatement was induced 

(F(2,20)=3.499, p<0.05, main effect of treatment, two-way RM 

ANOVA followed by Holm-Sidak multiple comparisons, P<0.05, Figure 

3). 

 

Figure 3 The effect of combined administration of subthreshold doses of the 

cannabinoid agonist CP-55,940 and the alpha-2 adrenergic antagonist BRL-44408 on 

reinstatement of extinguished cocaine-induced conditioned place preference. Data 

represent the time spent in the cocaine-paired compartment (mean +/- SEM) during 

the extinction session prior to reinstatement testing and after reinstatement testing 

with vehicles (Veh + Veh), BRL-44408 (5 mg/kg, i.p.) and vehicle (BRL+ Veh), and 
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BRL-44408 and CP 55,940 (20 μg/kg, i.p.) (CP+BRL). All injections were administered 

30 min prior to reinstatement testing. A significant increase in the time spent in the 

cocaine-paired compartment during reinstatement testing compared to the preceding 

extinction session was seen after administration of CP and BRL (* =p<0.05, Holm-

Sidak multiple comparison test) but not after BRL or vehicle alone. A significant 

difference between the time spent in the cocaine-paired compartment on 

reinstatement days was seen between the CP+BRL and the BRL+Veh and the 

Veh+Veh treatment groups (@ = p<0.05, Holm-Sidak multiple comparison test). 

Discussion 

We found that systemic administration of a cannabinoid 

antagonist can reverse stress- but not cocaine-induced reinstatement 

of cocaine seeking behavior in male C57Bl/6 mice. Cannabinoid 

receptors are located in many brain areas involved in stress and 

addiction (Herkenham et al., 1990; Mailleux and Vanderhaeghen, 

1992). They influence the release of multiple neurotransmitters, 

including GAB A, glutamate, norepinephrine and dopamine (Lopez-

Moreno et al., 2008). Given the widespread distribution of cannabinoid 

receptors and the multiplicity of neurotransmitter systems with which 

the ECS interacts, it is not surprising that the effects of systemic 

administration of cannabinoid agonists and antagonists have complex 

and even contradictory effects on addictive behavior. In particular, 

several studies which used rats to examine the effect of cannabinoids 

on cocaine reinstatement using a cocaine self-administration model 

found that cannabinoid antagonists block cocaine-induced 

reinstatement (De Vries et al., 2001; Filip et al., 2006 ; Xi et al., 

2006) but not stress-induced reinstatement of cocaine seeking 

behavior (De Vries et al., 2001). In contrast, Ward et al., (2009) found 

that a cannabinoid antagonist did not block cocaine-induced 

reinstatement in mice. It is possible that different aspects of 

endocannabinoid effects on addiction are being revealed in studies that 

use different species, different tests to measure relapse, different 

drugs and dosages, and different stress paradigms. 

The neurochemical pathways that mediate cocaine- and stress-

induced reinstatement are not identical. There is evidence that stress-

induced but not cocaine-induced reinstatement involves brain 

noradrenergic pathways, in particular noradrenergic systems that 

terminate in the bed nucleus of the stria terminalis (BNST) and central 

nucleus of the amygdala (Leri et al., 2002). In rat self administration 
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models of cocaine reinstatement, treatments that reduce 

noradrenergic signaling, either by blocking beta adrenergic receptors 

(Leri et al., 2002) or suppressing the release of NE by alpha-2 

adrenergic receptor activation (Erb et al 2000), reduce stress-induced 

but not cocaine-induced reinstatement of cocaine seeking. In addition, 

Mantsch et al., (2010) reported that beta adrenergic receptor 

antagonists or drugs that decrease NE release block stress-induced 

reinstatement but not cocaine-induced reinstatement using the mouse 

conditioned place preference methodology. 

It is possible that the ECS plays a role in stress-induced 

reinstatement by enhancing the release of NE. We found that systemic 

injection of the cannabinoid agonist, CP 55,940 could not induce 

reinstatement when injected alone, but did cause reinstatement when 

combined with a non-reinstating dose of BRL-44408, an alpha-2A 

adrenergic antagonist that causes increased release of NE. Stress has 

been shown to alter endocannabinoid concentrations (Patel and Hillard, 

2008; Cota, 2008; Hill et al., 2010) and there is significant interaction 

between the endocannabinoid and noradrenergic systems. Cannabinoid 

receptors are present in the locus coeruleus (LC) and nucleus of the 

solitary tract, noradrenergic brainstem nuclei that project to forebrain 

areas including the BNST (Herkenham et al., 1991) and 

electrophysiological studies have demonstrated that cannabinoid 

agonists affect firing rates of neurons in the LC (Mendiguren and 

Pineda, 2006; Muntoni et al., 2006). Further, the cannabinoid agonist 

WIN 55,212-2 increases c-fos expression in the LC (Patel and Hillard, 

2003) and increases forebrain NE release as well as increase indices of 

noradrenergic activity (Oropeza et al., 2005; Page et al., 2007; Page 

et al., 2008). In addition to possibly acting on brain stem 

noradrenergic projection neurons, endocannabinoids could also be 

acting within the BNST. CB1 receptors have been localized on 

presynaptic excitatory and inhibitory synaptic terminals within the 

BNST (Puente et al., 2010) and mRNA for CB1 receptors has been 

found in both projection neurons to the BNST as well as in intrinsic 

inhibitory neurons (Matsuda et al., 1993). The CB1 receptors within 

the BNST have been linked anatomically and functionally to reward 

pathways (Massi et al., 2008; Grueter et al., 2006). 

Alternative hypotheses regarding the interaction of 

cannabinergic and noradrenergic systems are also possible. For 
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example, activation of CB1 receptors on GABAergic terminals could 

suppress inhibition of neurons downstream from NE release in the 

BNST. 

The hypothesis that the ECS may serve as a link between stress 

and noradrenergic dependent processes has also been proposed for 

the consolidation of aversive memories. It is known that noradrenergic 

transmission within the basolateral amygdala is critical for stress-

induced enhancement of memory consolidation (Roozendaal et al., 

2002; Roozendaal et al., 2004; Roozendaal et al., 2006). Campolongo 

et al., (2009) have found that cannabinoid antagonists impair and 

cannabinoid agonists enhance stress-induced memory consolidation 

and have proposed that stress may act to enhance memory, at least in 

part, by stimulating the release of endocannabinoids which then lead 

to the release of NE. 

Although the results of this study support a possible interaction 

between the ECS and noradrenergic systems in stress-induced 

reinstatement of cocaine seeking behavior, blockade of swim stress-

induced reinstatement by AM-251 may also reflect the interaction of 

the ECS with other brain pathways and neurotransmitters. For 

example, the ECS has been implicated in the regulation of stress 

response by the hypothalamic-pituitary-adrenal axis, as well as the 

release of numerous neurotransmitter systems involved in addiction, 

including GABA, glutamate, dopamine, serotonin, acetylcholine and 

neuropeptides (Lopez-Moreno). The interaction of the ECS with these 

systems in stress-induced reinstatement remains to be investigated. 

We found that a cannabinoid antagonist blocks stress- but not 

cocaine-induced reinstatement of cocaine seeking behavior in mice. 

Further, we have found that non-reinstating dose of a cannabinoid 

agonist and a non-reinstating dose of an alpha-2 adrenergic 

autoreceptor antagonist synergize to produce reinstatement. These 

results are consistent with the hypothesis that stress exposure but not 

cocaine triggers the endogenous activation of CB1 receptors and that 

the ECS interacts with noradrenergic mechanisms to influence stress-

induced reinstatement of cocaine-seeking behavior. 

  

http://dx.doi.org/10.1016/j.neuroscience.2011.08.021
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422566/#R53
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422566/#R53
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422566/#R51
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422566/#R52
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422566/#R6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422566/#R6


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuroscience, Vol. 204 (March 2012): pg. 117-124. DOI. This article is © Elsevier and permission has been granted for this 
version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

16 

 

Highlights 

 Endocannabinoids and stress-induced cocaine reinstatement 

 Cannabinoid antagonist AM-251 blocks stress- induced cocaine 

reinstatement 

 Cannabinoid antagonist AM-251 does not block cocaine-induced 

cocaine reinstatement 

 Cannabinoid agonist does not induce cocaine reinstatement 

 Cannabinoid and noradrenergic agents synergize to induce cocaine 

reinstatement 
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