200 research outputs found

    Detection of Leptospira DNA in urine and presence of specific antibodies in outdoor cats in Germany

    Get PDF
    Objectives Clinical manifestation of infection with Leptospira species in cats is rare. Nevertheless, cats can develop specific antibodies against the spirochetes after infection. In Canada, Taiwan and the USA it was recently demonstrated that naturally infected cats can also shed DNA from pathogenic Leptospira species in their urine, but the zoonotic potential of infected cats is still unclear. The objective of this study was to demonstrate if outdoor cats in Germany shed DNA from pathogenic Leptospira species in their urine. As a second aim, antibody prevalence was determined. Methods Two hundred and fifteen outdoor cats were prospectively recruited. Urine samples were tested by realtime PCR targeting the lipL32 gene of pathogenic Leptospira species. Antibody titres against eight serovars (Australis, Autumnalis, Bratislava, Canicola, Copenhageni, Grippotyphosa, Pomona, Saxkoebing) belonging to seven serogroups (Australis, Autumnalis, Canicola, Grippotyphosa, Icterohaemorrhagiae, Pomona, Sejroe) were determined by microscopic agglutination test. Results Urine samples from 7/215 cats (3.3%;95% confidence interval [CI] 0.9-5.7) were PCR-positive. Specific antibodies were detected in 35/195 cats (17.9%;95% CI: 12.5-23.3) with titres ranging from 1:100 to 1:6400. Australis, Bratislava and Grippotyphosa were the most common serovars. Conclusions and relevance Outdoor cats in Germany can shed DNA from pathogenic Leptospira species. Therefore, outdoor cats should be considered as a possible source of infection for dogs or humans. Further studies are needed to determine the role of Leptospira species as a cause of disease in cats

    Antibiotikaeinsatz in der Bayerischen Schweinehaltungspraxis ABYS: Antibiotikaeinsatz und Antibiotikaresistenz in ökologischen Betrieben

    Get PDF
    Between 2012 and 2014, ABYS study recorded antibiotic use, detection and resistance data for 23 organic and 35 conventional pig farms. Antibiotic contents of farm-made fertilizers were assessed by LC/MS-MS. Phenotypic antimicrobial resistance was investigated in Escherichia (E.) coli (indicator bacteria); antimicrobial resistance genes of the total bacterial microbiota (sul(II), tet(A), tet(B), tet(M); marker Measured in nUDD (number of animals treated multiplied by treatment days), colistin was the most frequently used antibiotic, in organic farms followed by tylosin, doxycycline and amoxicillin. Antibiotic residues were rarely detected; however, manure contained up to 10^8 antimicrobial resistance genes per gram; concentrations were higher when the antibiotic had been used on farm. In six farms, antimicrobial resistant E. coli were tracked from the moment when pigs were placed on farm. Some isolates carried a broad variety of resistances from the very beginning that were maintained until slaughter, despite the fact that partly no antibiotics were applied during fattening. Approaches for reducing carry-over of antimicrobial resistant bacteria will be discusse

    Seroprevalence of Leptospira spp. infection in Cattle from Central and Northern Madagascar

    Get PDF
    Leptospirosis is a zoonotic disease of global importance, especially in tropical countries. The current Leptospira spp. seroprevalence in cattle from central and northern Madagascar is unknown. Thus, the aim of this study was to determine the seroprevalence resulting from infections with pathogenic Leptospira spp. in zebu cattle from these areas. Serum samples from 194 animals were tested by microscopic agglutination test (MAT) using a panel of 12 serovars as antigens. Samples with a titer of ≥1:100 were considered positive. The overall seroprevalence was 59.3% (95% CI; 52.0-66.2%) with titers ranging from 1:100 to 1:1600. Among the seropositive animals, the most frequent antibody reactions were against serovar L. Tarassovi (serogroup L. Tarassovi) with 40.2% (33.3-47.5%), followed by L. Hardjo (L. Sejroe) with 13.9% (9.5-19.8%), L. Grippotyphosa (L. Grippotyphosa) with 9.8% (6.2-15.1%), L. Pomona (L. Pomona) with 7.7% (4.5-12.7%) and L. Autumnalis (L. Autumnalis) with 5.2% (2.6-9.5%). Less than 5% of the samples reacted positively against the remaining serovars. These results indicate a very high exposure of Malagasy cattle to Leptospira spp. which, consequently, poses a definite risk for people working with cattle acquiring this zoonotic infection

    Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto

    Get PDF
    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s. s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s. s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species

    Exposure to Leptospira spp. and associated risk factors in the human, cattle and dog populations in Bhutan

    Get PDF
    Leptospirosis is a neglected worldwide zoonotic bacterial disease with a high prevalence in subtropical and tropical countries. The prevalence of Leptospira spp. in humans, cattle and dogs is unknown in Bhutan. Therefore, we sought to find out whether humans, cattle or dogs had been infected in the past with leptospires by measuring antibodies in the serum. We therefore collected blood from 864 humans >/=13 years of age, 130 bovines and 84 dogs from different rural and urban areas in Bhutan and tested the serum for antibodies specific for leptospires with a screening of enzyme-linked immunosorbent assays (ELISA) and a confirmatory microscopic agglutination test (MAT). In humans, 17.6% were seropositive by ELISA and 1.6% by MAT. The seropositivity was stronger in bovines (36.9%) and dogs (47.6%). "Having had a fever recently" (OR 5.2, p = 0.004), "working for the military" (OR 26.6, p = 0.028) and "being unemployed" (OR 12.9, p = 0.041) (reference category = housemaker) were statistically significantly associated with seropositivity when controlled for the effects of other risk factors. However, due to the small number of positive test results, the findings on risk factors should be interpreted with caution. Based on the serogroups found in the three species, dogs could be a source of infection for humans, or dogs and humans are exposed to the same environmental risk factors Clinical leptospirosis in humans and domestic animals should be investigated by testing blood and urine for the presence of leptospires by molecular methods (qPCR)

    Self-assembly of ordered wurtzite/rock salt heterostructures—A new view on phase separation in MgxZn1−xO

    Get PDF
    The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg x Zn 1−xO heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg x Zn 1−xO layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, we suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al2O4 spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg x Zn 1−xO. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth

    Vector-borne and other pathogens of potential relevance disseminated by relocated cats

    Get PDF
    Large populations of unowned cats constitute an animal welfare, ecological, societal and public health issue worldwide. Their relocation and homing are currently carried out in many parts of the world with the intention of relieving suffering and social problems, while contributing to ethical and humane population control in these cat populations. An understanding of an individual cat’s lifestyle and disease status by veterinary team professionals and those working with cat charities can help to prevent severe cat stress and the spread of feline pathogens, especially vector-borne pathogens, which can be overlooked in cats. In this article, we discuss the issue of relocation and homing of unowned cats from a global perspective. We also review zoonotic and non-zoonotic infectious agents of cats and give a list of practical recommendations for veterinary team professionals dealing with homing cats. Finally, we present a consensus statement consolidated at the 15th Symposium of the Companion Vector-Borne Diseases (CVBD) World Forum in 2020, ultimately to help veterinary team professionals understand the problem and the role they have in helping to prevent and manage vector-borne and other pathogens in relocated cats

    In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles

    Get PDF
    Biodegradable core−shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of 30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.United States. Dept. of Defense (Institute for Soldier Nanotechnology, contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and HarvardSingapore. Agency for Science, Technology and ResearchHoward Hughes Medical Institute (Investigator

    A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Get PDF
    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine
    corecore