613 research outputs found

    Liquefaction Resistance of Gravelly Soils

    Get PDF
    Liquefaction assessments of gravels and soils that contain a large gravel fraction are difficult. Undisturbed (intact) sampling of these soils is problematic and laboratory testing carried out on reconstituted samples or on frozen samples obtained from the field is time consuming, expensive, and interpretation of the results requires considerable judgment. Because of these and other issues, for a remote site in British Columbia, Canada (aka “Study Site”), it was decided to carry out the liquefaction potential assessment using existing published relationships and case history data on similar soils. This case history describes the approach utilized, including material mechanical properties, measured shear wave velocities and insitu density data obtained from shallow test pits excavated across the study site. Comparisons to published data on similar soils are discussed. To assess the liquefaction potential of the gravels, normalized shear wave velocity data were related to void ratio. The void ratio was then related to the CRR using published relationships on a similar gravelly soil tested in the laboratory. The liquefaction potential was assessed in the conventional manner comparing the cyclic resistance ratio (after appropriate consideration of correction factors used in laboratory cyclic testing) to the seismic demand (CSR). The approach described in the case history generalizes the methodology for application to other gravel deposits at other sites

    Shear-Wave Velocity Characterization of the USGS Hawaiian Strong-Motion Network on the Island of Hawaii and Development of an NEHRP Site-Class Map

    Get PDF
    To assess the level and nature of ground shaking in Hawaii for the purposes of earthquake hazard mitigation and seismic design, empirical ground-motion prediction models are desired. To develop such empirical relationships, knowledge of the subsurface site conditions beneath strong-motion stations is critical. Thus, as a first step to develop ground-motion prediction models for Hawaii, wspectral-analysis-of-surface-waves (SASW) profiling was performed at the 22 free-field U.S. Geological Survey (USGS) strong-motion sites on the Big Island to obtain shear-wave velocity (V(S)) data. Nineteen of these stations recorded the 2006 Kiholo Bay moment magnitude (M) 6.7 earthquake, and 17 stations recorded the triggered M 6.0 Mahukona earthquake. V(S) profiling was performed to reach depths of more than 100 ft. Most of the USGS stations are situated on sites underlain by basalt, based on surficial geologic maps. However, the sites have varying degrees of weathering and soil development. The remaining strong-motion stations are located on alluvium or volcanic ash. V(S30) (average V(S) in the top 30 m) values for the stations on basalt ranged from 906 to 1908 ft/s [National Earthquake Hazards Reduction Program (NEHRP) site classes C and D], because most sites were covered with soil of variable thickness. Based on these data, an NEHRP site-class map was developed for the Big Island. These new V(S) data will be a significant input into an update of the USGS statewide hazard maps and to the operation of ShakeMap on the island of Hawaii.George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) under NSF CMS-0086605FEMA HSFEHQ-06-D-0162, HSFEHQ-04-D-0733U.S. Geological Survey, Department of the Interior 08HQGR0036Geotechnical Engineering Cente

    Liquefaction Potential of Recent Fills versus Natural Sands Located in High-Seismicity Regions Using Shear-Wave Velocity

    Get PDF
    The liquefaction potential of clean and silty sands is examined on the basis of the field measurement of the shear-wave velocity, Vs. The starting point is the database of 225 case histories supporting the Andrus-Stokoe Vs-based liquefaction chart for sands, silts, and gravels. Only clean and silty sands with nonplastic fines are considered, resulting in a reduced database of 110 case histories, which are plotted separately by type of deposit. A line of constant cyclic shear strain, γcl≈0.03%, is recommended for liquefaction evaluation of recent uncompacted clean and silty sand fills and earthquake magnitude, Mw=7.5. The geologically recent natural silty sand sites in the Imperial Valley of southern California have significantly higher liquefaction resistance as a result of preshaking caused by the high seismic activity in the valley. A line of constant cyclic shear strain, γcl≈0.1–0.2%, is recommended for practical use in the Imperial Valley. Additional research including revisiting available Vs-based and penetration-based databases is proposed to generalize the results of the paper and develop liquefaction charts that account more realistically for deposit type, seismic history, and geologic age

    The Conversation Analytic Role-play Method (CARM): A Method for Training Communication Skills as an Alternative to Simulated Role-play

    Get PDF
    This an Accepted Manuscript of an article published by Taylor & Francis in Research on Language and Social Interaction on 06-08-2014, available online: http://www.tandfonline.com/10.1080/08351813.2014.925663.The Conversation Analytic Role-play Method (CARM) is an approach to training, based on conversation analytic evidence about the problems and roadblocks that can occur in institutional interaction. Traditional training often relies on role-play, but that differs systematically from the actual events it is meant to mimic and prepare for. In contrast, CARM uses animated audio- and video-recordings of real-time, actual encounters. CARM provides a unique framework for discussing and evaluating, in slow motion, actual talk as people do their jobs. It also provides an evidence base for making decisions about effective practice and communication policy in organizations. This article describes CARM's distinctive practices and its impact on professional development across different organizations. Data are in British English

    The interaction of class and gender in illness narratives

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 BSA Publications Ltd.Perspectives on gender and identity that emphasize variability of performance, local context and individual agency have displaced earlier paradigms.These are now perceived to have supported gender stereotypes and language ideologies by emphasizing gender difference and homogeneity within genders. In a secondary analysis of health and illness narratives we explore the interaction of class and gender in individuals' constructions of gendered identity. High social class men perform gender in particularly varied ways and we speculate that this variable repertoire, including the use of what was once termed `women's language', is linked to a capacity to maintain social distinction and authority. Men's performance of conventional masculinity is often threatened by both the experience of illness and being interviewed about personal experience. Lower social class women in particular demonstrate an intensification of a pre-existing informal family and support group culture, marking successful members by awarding them the accolade of being `lovely'.ESR

    The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps

    Get PDF
    The most fruitful approach to studying low energy soliton dynamics in field theories of Bogomol'nyi type is the geodesic approximation of Manton. In the case of vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this approximation, and hence proved that it is valid in the low speed regime. His method employs energy estimates which rely on a key coercivity property of the Hessian of the energy functional of the theory under consideration. In this paper we prove an analogous coercivity property for the Hessian of the energy functional of a general sigma model with compact K\"ahler domain and target. We go on to prove a continuity property for our result, and show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive in the degree 1 sector. We present numerical evidence which suggests that the Hessian is globally coercive in a certain equivariance class of the degree n sector for n>1. We also prove that, within the geodesic approximation, a single CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded discussion of the main function spac
    • 

    corecore